Skip to main content
Log in

Usnic acid-incorporated alginate and gelatin sponges prepared by freeze-drying for biomedical applications

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

There is considerable interest in the pharmaceutical and biomedical areas in the use of sponges, produced with biopolymers, as matrices for the controlled release of drugs. The objective of this work was to evaluate the physicochemical characterization of alginate–gelatin (ALG–GEL) sponges containing usnic acid (UA), by thermogravimetric analysis (TG/DTG), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The macroscopic aspect showed a flexible structure, with variations in coloration depending on the concentration of UA in the sponges. The TG/DTG curves of ALG–GEL sponges and sponges containing 1 and 5 % of UA showed similar profiles and percentages of loss of mass. The DSC curves of both the sponges showed similar profiles, with two events involving a variation of enthalpy being observed, the first an endothermic event and the latter exothermic events, typical of decomposition. These curves show the absence of an endothermic peak of UA at 201 °C, indicating that the drug was present in the polymeric system. The SEM showed the ALG–GEL sponge to have the largest average pore diameter and a more heterogeneous arrangement of polymeric fibers, while sponges incorporated with UA showed more homogeneous arrangement of polymeric fibers. In conclusion, the incorporation of UA did not change the thermal stability of the sponges. Furthermore, the sponges incorporated with the drug showed a microstructural organization suitable for drug release systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aroguz AZ, Baysal K, Adiguzel Z, Baysal BM. Alginate/polyoxyethylene and alginate/gelatin hydrogels: preparation, characterization, and application in tissue engineering. Appl Biochem Biotechnol. 2014;173(2):433–48. doi:10.1007/s12010-014-0851-0.

    Article  CAS  Google Scholar 

  2. Nunes PS, Albuquerque-Junior RLC, Cavalcante DRR, Dantas MDM, Cardoso JC, Bezerra MS et al. Collagen-based films containing liposome-loaded usnic acid as dressing for dermal burn healing. J Biomed Biotechnol 2011;1–9.

  3. Lai HL, Abu’Khalil A, Craig DQ. The preparation and characterisation of drug-loaded alginate and chitosan sponges. Int J Pharm. 2003;251(1–2):175–81.

    Article  CAS  Google Scholar 

  4. Shapiro L, Cohen S. Novel alginate sponges for cell culture and transplantation. Biomaterials. 1997;18(8):583–90.

    Article  CAS  Google Scholar 

  5. Thu HE, Zulfakar MH, Ng SF. Alginate based bilayer hydrocolloid films as potential slow-release modern wound dressing. Int J Pharm. 2012;434(1–2):375–83. doi:10.1016/j.ijpharm.2012.05.044.

    Article  CAS  Google Scholar 

  6. Huang Z, Zheng G, Tao J, Ruan J. Anti-inflammatory effects and mechanisms of usnic acid. J Wuhan Univ Technol-Mater Sci Ed. 2011;26(5):955–9. doi:10.1007/s11595-011-0344-8.

    Article  CAS  Google Scholar 

  7. Jin G, Prabhakaran MP, Kai D, Annamalai SK, Arunachalam KD, Ramakrishna S. Tissue engineered plant extracts as nanofibrous wound dressing. Biomaterials. 2013;34(3):724–34. doi:10.1016/j.biomaterials.2012.10.026.

    Article  CAS  Google Scholar 

  8. Silva SS, Oliveira NM, Oliveira MB, da Costa DPS, Naskar D, Mano JF, et al. Fabrication and characterization of Eri silk fibers-based sponges for biomedical application. Acta Biomater. 2016;32:178–89. doi:10.1016/j.actbio.2016.01.003.

    Article  CAS  Google Scholar 

  9. Patrucco A, Cristofaro F, Simionati M, Zoccola M, Bruni G, Fassina L, et al. Wool fibril sponges with perspective biomedical applications. Mater Sci Eng C. 2016;61:42–50. doi:10.1016/j.msec.2015.11.073.

    Article  CAS  Google Scholar 

  10. Censi R, Di Martino P, Vermonden T, Hennink WE. Hydrogels for protein delivery in tissue engineering. J Control Release. 2012;161(2):680–92. doi:10.1016/j.jconrel.2012.03.002.

    Article  CAS  Google Scholar 

  11. Ma L, Yu W, Ma X. Preparation and characterization of novel sodium alginate/chitosan two ply composite membranes. J Appl Polym Sci. 2007;106(1):394–9. doi:10.1002/app.26463.

    Article  CAS  Google Scholar 

  12. Dai M, Zheng X, Xu X, Kong X, Li X, Guo G, et al. Chitosan–alginate sponge: preparation and application in curcumin delivery for dermal wound healing in rat. J Biomed Biotechnol. 2009;2009:595126. doi:10.1155/2009/595126.

    Article  Google Scholar 

  13. Suarez-Gonzalez D, Barnhart K, Saito E, Vanderby R Jr, Hollister SJ, Murphy WL. Controlled nucleation of hydroxyapatite on alginate scaffolds for stem cell-based bone tissue engineering. J Biomed Mater Res A. 2010;95(1):222–34. doi:10.1002/jbm.a.32833.

    Article  Google Scholar 

  14. Groenewold MD, Gribnau AJ, Ubbink DT. Topical haemostatic agents for skin wounds: a systematic review. BMC Surg. 2011;11:15. doi:10.1186/1471-2482-11-15.

    Article  Google Scholar 

  15. Perez RA, Won JE, Knowles JC, Kim HW. Naturally and synthetic smart composite biomaterials for tissue regeneration. Adv Drug Deliv Rev. 2013;65(4):471–96. doi:10.1016/j.addr.2012.03.009.

    Article  CAS  Google Scholar 

  16. Mukherjee I, Rosolen M. Thermal transitions of gelatin evaluated using DSC sample pans of various seal integrities. J Therm Anal Calorim. 2013;114(3):1161–6. doi:10.1007/s10973-013-3166-4.

    Article  CAS  Google Scholar 

  17. Eriningsih R, Marlina R. Pre-clinical research of gelatin/alginate yarn for medical textile. Sci Res J (Scirj). 2014;II(III):26–32.

    Google Scholar 

  18. Michon C, Cuvelier G, Relkin P, Launay B. Influence of thermal history on the stability of gelatin gels. Int J Biol Macromol. 1997;20(4):259–64.

    Article  CAS  Google Scholar 

  19. Gómez-Estaca J, Gómez-Guillén MC, Fernández-Martín F, Montero P. Effects of gelatin origin, bovine-hide and tuna-skin, on the properties of compound gelatin–chitosan films. Food Hydrocoll. 2011;25(6):1461–9. doi:10.1016/j.foodhyd.2011.01.007.

    Article  Google Scholar 

  20. Zeng Q, Chen W. The functional behavior of a macrophage/fibroblast co-culture model derived from normal and diabetic mice with a marine gelatin-oxidized alginate hydrogel. Biomaterials. 2010;31(22):5772–81. doi:10.1016/j.biomaterials.2010.04.022.

    Article  CAS  Google Scholar 

  21. Charlesworth TM, Agthe P, Moores A, Anderson DM. The use of haemostatic gelatin sponges in veterinary surgery. J Small Anim Pract. 2012;53(1):51–6. doi:10.1111/j.1748-5827.2011.01162.x.

    Article  CAS  Google Scholar 

  22. Wang T, Zhu X-K, Xue X-T, Wu D-Y. Hydrogel sheets of chitosan, honey and gelatin as burn wound dressings. Carbohydr Polym. 2012;88(1):75–83. doi:10.1016/j.carbpol.2011.11.069.

    Article  CAS  Google Scholar 

  23. Wang Q, Hu X, Du Y, Kennedy JF. Alginate/starch blend fibers and their properties for drug controlled release. Carbohydr Polym. 2010;82(3):842–7. doi:10.1016/j.carbpol.2010.06.004.

    Article  CAS  Google Scholar 

  24. Kotagale NR, Patel CJ, Parkhe AP, Khandelwal HM, Taksande JB, Umekar MJ. Carbopol 934-sodium alginate-gelatin mucoadhesive ondansetron tablets for buccal delivery: effect of ph modifiers. Indian J Pharm Sci. 2010;72(4):471–9. doi:10.4103/0250-474x.73912.

    Article  CAS  Google Scholar 

  25. Bessadottir M, Egilsson M, Einarsdottir E, Magnusdottir IH, Ogmundsdottir MH, Omarsdottir S, et al. Proton-shuttling lichen compound usnic acid affects mitochondrial and lysosomal function in cancer cells. PLoS ONE. 2012;7(12):e51296. doi:10.1371/journal.pone.0051296.

    Article  CAS  Google Scholar 

  26. Ingolfsdottir K, Chung GA, Skulason VG, Gissurarson SR, Vilhelmsdottir M. Antimycobacterial activity of lichen metabolites in vitro. Eur J Pharm Sci. 1998;6(2):141–4.

    Article  CAS  Google Scholar 

  27. Vijayakumar CS, Viswanathan S, Reddy MK, Parvathavarthini S, Kundu AB, Sukumar E. Anti-inflammatory activity of (+)-usnic acid. Fitoterapia. 2000;71(5):564–6.

    Article  CAS  Google Scholar 

  28. da Luz JSB, de Oliveira EB, Martins MCB, da Silva NH, Alves LC, dos Santos FAB, et al. Ultrastructural analysis of leishmania infantum chagasi Promastigotes forms treated in vitro with usnic acid. Sci World J. 2015;2015:617401. doi:10.1155/2015/617401.

    Google Scholar 

  29. Martins MCB, Silva MC, Silva LRS, Lima VLM, Pereira EC, Falcão EPS, et al. Usnic acid potassium salt: an alternative for the control of Biomphalaria glabrata (Say, 1818). PLoS ONE. 2014;9(11):e111102. doi:10.1371/journal.pone.0111102.

    Article  Google Scholar 

  30. Odabasoglu F, Cakir A, Suleyman H, Aslan A, Bayir Y, Halici M, et al. Gastroprotective and antioxidant effects of usnic acid on indomethacin-induced gastric ulcer in rats. J Ethnopharmacol. 2006;103(1):59–65. doi:10.1016/j.jep.2005.06.043.

    Article  CAS  Google Scholar 

  31. Chvapil M. Collagen sponge: theory and practice of medical applications. J Biomed Mater Res. 1977;11(5):721–41. doi:10.1002/jbm.820110508.

    Article  CAS  Google Scholar 

  32. Dagalakis N, Flink J, Stasikelis P, Burke JF, Yannas IV. Design of an artificial skin. Part III. Control of pore structure. J Biomed Mater Res. 1980;14(4):511–28. doi:10.1002/jbm.820140417.

    Article  CAS  Google Scholar 

  33. Choi YS, Hong SR, Lee YM, Song KW, Park MH, Nam YS. Study on gelatin-containing artificial skin: I. Preparation and characteristics of novel gelatin–alginate sponge. Biomaterials. 1999;20(5):409–17.

    Article  CAS  Google Scholar 

  34. Bilgainya R, Khan F, Mann S. Spontaneous patterning and nanoparticle encapsulation in carboxymethylcellulose/alginate/dextran hydrogels and sponges. Mater Sci Eng C. 2010;30(3):352–6. doi:10.1016/j.msec.2009.11.010.

    Article  CAS  Google Scholar 

  35. Nandagiri VK, Gentile P, Chiono V, Tonda-Turo C, Matsiko A, Ramtoola Z, et al. Incorporation of PLGA nanoparticles into porous chitosan–gelatin scaffolds: influence on the physical properties and cell behavior. J Mech Behav Biomed Mater. 2011;4(7):1318–27. doi:10.1016/j.jmbbm.2011.04.019.

    Article  CAS  Google Scholar 

  36. Nunes PS, Bezerra MS, Costa LP, Cardoso JC, Albuquerque RLC, Rodrigues MO, et al. Thermal characterization of usnic acid/collagen-based films. J Therm Anal Calorim. 2010;99(3):1011–4. doi:10.1007/s10973-009-0661-8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico/CNPq/Brazil) and Fundação de Amparo à Pesquisa do Estado de Sergipe/FAPITEC-SE for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Santos Nunes.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper and there has been no significant financial support for this work that could have influenced its outcome.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nascimento Porto Neto, A.d., Santos Cruz, C.F.d., Serafini, M.R. et al. Usnic acid-incorporated alginate and gelatin sponges prepared by freeze-drying for biomedical applications. J Therm Anal Calorim 127, 1707–1713 (2017). https://doi.org/10.1007/s10973-016-5760-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5760-8

Keywords

Navigation