Skip to main content
Log in

Influence of the Structure of Alginate-Chitosan Materials on the Kinetics of Usnic Acid Release

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Porous materials, cryogels and aerogels, were synthesized based on a sodium alginate–chitosan interpolymer complex via freeze-drying and supercritical drying. It was shown that the specific surface area of aerogels was approximately ten times higher than that of cryogels due to the developed mesoporous structure and amounted to 260 m2/g. The polyelectrolyte nature of the obtained materials, their dimensional stability, and their high water absorption (15 and 45 g/g for cryogel and aerogel, respectively) allowed us to use the obtained materials for sorption-application therapy. To impart antimicrobial properties, the materials were impregnated with usnic acid isolated from the lichen Usnea subfloridana, which has antibacterial activity against Escherichia coli bacteria and the microorganism species Staphylococcus aureus and Bacillus subtilis. It was shown that the minimum inhibitory concentration of usnic acid for these test cultures was 0.03 mg/mL. The resulting materials are capable of a slow release of usnic acid over 5 h, while its maximum release was 60% for aerogel and 30% for cryogel. The kinetics of usnic acid release of from both materials is adequately described by the Korsmeyer–Peppas equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Kurinova, M.A., Gal’braikh, L.S., and Skibina, D.E., Sovrem. Med.: Aktual. Vopr., 2015, vols. 10–11, no. 43, pp. 137–145.

    Google Scholar 

  2. Belov, A.A., Vanyushenkova, A.A., Dosadina, E.E., and Khanafina, A.A., Rany Ran. Infekts., Zh. im. Prof. B. M. Kostyuchenka, 2018, vol. 5, no. 1, pp. 508–510.

    Google Scholar 

  3. Ostrovskii, N.V. and Belyanina, I.B., Zh. Neotlozh. Khir. im. I.I. Dzhanelidze, 2021, no. 1, pp. 50–51.

  4. Kuznetsova, T.A., Besednova, N.N., Usov, V.V., and Andryukov, B.G., Vestn. Khir. im. I. I. Grekova, 2020, vol. 179, no. 4, pp. 109–115.

    Google Scholar 

  5. Lipatov, V.A., Severinov, D.A., and Saakyan, A.R., Innova, 2019, vol. 1, no. 14, pp. 48–52.

    Google Scholar 

  6. Mikhailov, G.M., Lebedeva, M.F., Pinaev, G., Yudintseva, N.M., Blinova, M.I., and Panarin, E.F., Geny Kletki, 2006, vol. 1, no. 4, pp. 56–61.

    Google Scholar 

  7. Rencber, S., Cheaburu-Yilmaz, C.N., Kose, F.A., Karavana, S.Y., and Yilmaz, O., Cellul. Chem. Technol., vol. 53, pp. 655–665.

  8. Brovko, O.S., Palamarchuk, I.A., Val’chuk, N.A., Chukhchin, D.G., Bogolitsyn, K.G., and Boitsova, T.A., Zh. Fiz. Khim., 2017, vol. 91, no. 8, pp. 1420–1425.

    Google Scholar 

  9. Brovko, O.S., Palamarchuk, I.A., Val’chuk, N.A., Boitsova, T.A., Bogolitsyn, K.G., and Chukhchin, D.G., Izv. Ufim. Nauchn. Tsentra Ross. Akad. Nauk, 2016, vol. 3, no. 1, pp. 19–22.

    Google Scholar 

  10. He, J., Zhong, C., and Mi, J., Drug Deliv., 2005, vol. 12, no. 5, pp. 251–259.

    Article  CAS  PubMed  Google Scholar 

  11. Brovko, O.S., Palamarchuk, I.A., Val’chuk, N.A., Boitsova, T.A., and Bogolitsyn, K.G., Izv. Ufim. Nauchn. Tsentra Ross. Akad. Nauk, 2018, vol. 3, no. 2, pp. 45–49.

    Google Scholar 

  12. Val'chuk, N.A., Brovko, O.S., Palamarchuk, I.A., Boitsova, T.A., Bogolitsyn, K.G., Ivakhnov, A.D., Chukhchin, D.G., and Bogdanovich, N.I., Sverkhkrit. Flyuidy: Teor. Prakt., 2018, vol. 13, no. 3, pp. 83–89.

    Google Scholar 

  13. Moin, A., Gangadharappa, H.V., Adnan, M., Rizvi, S.M., Ashraf, S.A., Patel, M., and Allam, A.N., Drug Des., Dev. Ther., 2020, vol. 14, pp. 5325–5332.

    Article  CAS  Google Scholar 

  14. Baldino, L., Cardea, S., De Marco, I., and Reverchon, E., J. Supercritical Fluids, 2014, vol. 90, pp. 27–34.

    Article  CAS  Google Scholar 

  15. Ruiz-Caro, R. and Veiga-Ochoa, M.D., Molecules, 2009, vol. 14, no. 11, pp. 4370–4386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gorshkova, N.D., Brovko, O.S., Palamarchuk, I.A., Ivakhnov, A.D., Bogolitsyn, K.G., Bogdanovich, N.I., and Chukhchin, D.G., Sverkhkrit. Flyuidy: Teor. Prakt., 2020, vol. 15, no. 3, pp. 11–20.

    Google Scholar 

  17. Cocchietto, M., A, Naturwissenschaften, 2002, vol. 89, no. 4, pp. 137–146.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, Z., Zheng, Y., Li, Y., Bai, H., Ma, T., Song, X., and Gao, L., Biomed. Pharmacother., 2018, vol. 97, pp. 587–593.

    Article  CAS  PubMed  Google Scholar 

  19. Jin, J., Dong, Y., and He, L., J. Chin. Med. Mater., 2005, vol. 28, no. 2, pp. 109–111.

    Google Scholar 

  20. Bruno, M., Trucchi, B., Burlando, B., Ranzato, E., Martinotti, S., Akkol, E.K., and Verotta, L., Bioorg. Med. Chem., 2013, vol. 21, no. 7, pp. 1834–1843.

    Article  CAS  PubMed  Google Scholar 

  21. Lucarini, R., Tozatti, M.G., de Oliveira, Salloum A.I., Crotti, A.E., Silva, M.L., Gimenez, V.M., and Cunha, W.R., Afr. J. Biotechnol., 2012, vol. 11, no. 20, pp. 4636–4639.

    CAS  Google Scholar 

  22. Pogodina, N.V., Pavlov, G.M., Bushin, S.V., Mel’nikov, A.B., Lysenko, Y.B., Nud’ga, L.A., and Tsvetkov, V.N., Polymer Sci. USSR, 1986, vol. 28, pp. 251–259.

    Article  Google Scholar 

  23. Holme, H.K., Davidsen, L., Kristiansen, A., and Smidsrod, O., Carbohydr. Polymer, 2008, vol. 73, pp. 656–664.

    Article  CAS  Google Scholar 

  24. Raymond, L., Morin, F.G., and Marchessault, R.H., Carbohydr. Res., 1993, vol. 246, no. 1, pp. 331–336.

    Article  CAS  Google Scholar 

  25. Brovko, O.S., Palamarchuk, I.A., Boitsova, T.A., Bogolitsyn, K.G., Valchuk, N.A., and Chukhchin, D.G., Macromol. Res., 2015, vol. 23, pp. 1059–1067.

    Article  CAS  Google Scholar 

  26. Nischwitz, S.P., de Mattos, I.B., Hofmann, E., Groeber-Becker, F., Funk, M., Mohr, G.J., and Kamolz, L.P., Burns, 2019, vol. 45, pp. 1336–1341.

    Article  CAS  PubMed  Google Scholar 

  27. Gorshkova, N., Brovko, O., Palamarchuk, I., Bogolitsyn, K., Ivakhnov, A., Bogdanovich, N., Chukhchin, D., and Arkhilin, M., J. Sol–Gel Sci. Technol., 2020, vol. 95, no. 1, pp. 101–108.

    Article  CAS  Google Scholar 

  28. Sultan, M., Miyazaki, T., and Koyama, S., Renew. Energy, 2018, vol. 121, pp. 441–450.

    Article  CAS  Google Scholar 

  29. Yasinskaya, N.N., Murycheva, V.V., and Razumeev, K.E., Fibre Chem., 2020, vol. 52, pp. 28–33.

    Article  CAS  Google Scholar 

  30. Vilar, G., Tulla-Puche, J., and Albericio, F., Curr. Drug Deliv., 2012, vol. 9, no. 4, pp. 367–394.

    Article  CAS  PubMed  Google Scholar 

  31. Vorob'eva, E. and Krut’ko, N., Polimernye kompleksy v vodnykh i solevykh sredakh (Polymer Complexes in Aqueous and Saline Media), Minsk: Belorusskaya nauka, 2017.

  32. Cai, J. and Chen, X., RSC Adv., 2018, vol. 8, no. 69, pp. 39463–39469.

    Article  CAS  Google Scholar 

  33. Cansaran-Duman, D. and Halici, M.G., Turk Hij. Deneysel Biyol. Derg., 2012, vol. 69, no. 3, pp. 127–134.

    Article  CAS  Google Scholar 

  34. Lobanova, I.E., Andreeva, I.S., Vysochina, G.I., and Solov’yanova, N.A., Rastit. Mir Aziat. Ross., 2017, vol. 2, no. 26, pp. 85–91.

    Google Scholar 

  35. Wang, Y., Wang, J., Yuan, Z., Han, H., Li, T., Li, L., and Guo, X., Colloids Surf., vol. 152, pp. 252–259.

  36. Siepmann, J. and Peppas, N.A., Adv. Drug Deliv. Rev., 2001, vol. 48, pp. 139–157.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The studies were carried out in the course of the implementation of the State Task of the Federal Center for Integrated Arctic Research, the Ural Branch of the Russian Academy of Sciences, 2018–2021, “Physicochemical, genetic and morphological bases of the adaptation of plant objects under changing climate of high latitudes” (project no. АААА-А18-118012390231-9) on the equipment of the Arktika Center for Collective Use of Scientific Equipment (Northern (Arctic) Federal University) and the CT RF-Arktika Center for Collective Use (Federal Center for Integrated Arctic Research, the Ural Branch of the Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Gorshkova.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by D. Novikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorshkova, N.A., Brovko, O.S., Palamarchuk, I.A. et al. Influence of the Structure of Alginate-Chitosan Materials on the Kinetics of Usnic Acid Release. Appl Biochem Microbiol 58, 110–117 (2022). https://doi.org/10.1134/S0003683822020089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683822020089

Keywords:

Navigation