Skip to main content
Log in

Thermal behavior of polyvinyl alcohol–gellan gum–Al3+ composite hydrogels with improved network structure and mechanical property

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, the composite hydrogels of polyvinyl alcohol (PVA)–gellan gum (GG)–aluminum ion (Al3+) have been prepared by a repeated freezing and thawing method. By analyzing its structure, mechanical properties and thermal behavior, our result indicates that the ion of Al3+ plays a role of cross-link agent, and it reorganizes the network structure and enhances the mechanical properties for the composite hydrogels. Differential scanning calorimetry has been used to examine the thermal behavior. The melting enthalpy was obtained to evaluate the degree of crystallinity for PVA in hydrogel, which decreases with the increase in the content of GG. The decomposition temperature was obtained to evaluate the thermal stability. And the dehydration activation energy was obtained to evaluate the thermal behavior of water in hydrogel environment. Our result reveals that Al3+ ion enhances the molecular interactions between water and polymer chain, and improves the thermal stability of PVA–GG–Al3+ composite hydrogel. These results will benefit the development of hydrogel in bio-applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kobayashi M, Toguchida J, Oka M. Preliminary study of polyvinyl alcohol–hydrogel (PVA-H) artificial meniscus. Biomaterials. 2003;24:639–47.

    Article  CAS  Google Scholar 

  2. Spiller KL, Laurencin SJ, Charlton D, Maher SA, Lowman AM. Superporous hydrogels for cartilage repair: evaluation of the morphological and mechanical properties. Acta Biomater. 2008;4:17–25.

    Article  CAS  Google Scholar 

  3. Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev. 2012;64:49–60.

    Article  Google Scholar 

  4. Karimi A, Navidbakhsh M. Mechanical properties of PVA material for tissue engineering applications. Mater Technol. 2014;29:90–100.

    Article  CAS  Google Scholar 

  5. Holloway JL, Lowman AM, Palmese GR. Aging behavior of PVA hydrogels for soft tissue applications after in vitro swelling using osmotic pressure solutions. Acta Biomater. 2013;9:5013–21.

    Article  CAS  Google Scholar 

  6. Spiller KL, Maher SA, Lowman AM. Hydrogels for the repair of articular cartilage defects. Tissue Eng Part B Rev. 2011;17:281–99.

    Article  CAS  Google Scholar 

  7. Stammen JA, Williams S, Ku DN, Guldberg RE. Mechanical properties of a novel PVA hydrogel in shear and unconfined compression. Biomaterials. 2001;22:799–806.

    Article  CAS  Google Scholar 

  8. Oka M. Biomechanics and repair of articular cartilage. J Orthop Sci. 2001;6:448–56.

    Article  CAS  Google Scholar 

  9. Nuttelman CR, Mortisen DJ, Henry SM, Anseth KS. Attachment of fibronectin to poly(vinyl alcohol) hydrogels promotes NIH3T3 cell adhesion, proliferation, and migration. J Biomed Mater Res. 2001;57:217–23.

    Article  CAS  Google Scholar 

  10. Hwang MR, Kim JO, Lee JH, Kim YI, Kim JH, Chang SW, Jin SG, Kim JA, Lyoo WS. Gentamicin-loaded wound dressing with polyvinyl alcohol/dextran hydrogel: gel characterization and in vivo healing evaluation. AAPS PharmSciTech. 2010;11:1092–103.

    Article  CAS  Google Scholar 

  11. Chang CY, Lue A, Zhang L. Effects of crosslinking methods on structure and properties of cellulose/PVA hydrogels. Macromol Chem Phys. 2008;209:1266–73.

    Article  CAS  Google Scholar 

  12. Koyano T, Minoura N, Nagura M, Kobayashi K. Attachment and growth of cultured fibroblast cells on PVA/chitosan-blended hydrogels. J Biomed Mater Res. 1998;39:486–90.

    Article  CAS  Google Scholar 

  13. Prajapati VD, Jani GK, Zala BS, Khutliwala TA. An insight into the emerging exopolysaccharide gellan gum as a novel polymer. Carbohydr Polym. 2013;93:670–8.

    Article  CAS  Google Scholar 

  14. D’ArrigoQ G, Navarro G, Meo CD, Matricardi P, Torchilin V. Gellan gum nanohydrogel containing anti-inflammatory and anti-cancer drugs: a multi-drug delivery system for a combination therapy in cancer Treatment. Eur J Pharm Biopharm. 2014;87:208–16.

    Article  Google Scholar 

  15. Oliveira JT, Martins L, Picciochi R, Malafaya PB, Sousa RA. Gellan gum: a new biomaterial for cartilage tissue engineering applications. J Biomed Mater Res A. 2010;93:852–63.

    CAS  Google Scholar 

  16. Silva-Correia J, Oliveira JM, Caridade SG, Oliveira JT, Sousa RA, Mano JF, Reis RL. Gellan gum-based hydrogels for intervertebral disc tissue-engineering applications. J Tissue Eng Regen Med. 2011;5:97–107.

    Article  Google Scholar 

  17. Oliveira JT, Gardel LS, Rada T, Martins L, Gomes ME, Reis RL. Injectable gellan gum hydrogels with autologous cells for the treatment of rabbit articular cartilage defects. J Orthop Res. 2010;28:1193–9.

    Article  CAS  Google Scholar 

  18. Chandrasekaran R, Radha A. Molecular architectures and functional properties of gellan gum and related polysaccharides. Trends Food Sci Technol. 1995;6:143–8.

    Article  CAS  Google Scholar 

  19. Tang YJ, Sun J, Fan HS, Zhang XD. An improved complex gel of modified gellan gum and carboxymethyl chitosan for chondrocytes encapsulation. Carbohydr Polym. 2012;88:46–53.

    Article  CAS  Google Scholar 

  20. Tang JM, Tung MA, Zeng YY. Compression strength and deformation of gellan gels formed with mono- and divalent cations. Carbohydr Polym. 1996;29:11–6.

    Article  CAS  Google Scholar 

  21. Maiti S, Ranjit S, Mondol R, Ray S, Sa B. Al3+ ion cross-linked and acetalated gellan hydrogel network beads for prolonged release of glipizide. Carbohydr Polym. 2011;85:164–72.

    Article  CAS  Google Scholar 

  22. Jana S, Das A, Nayak AK, Sen KK, Basu SK. Aceclofenac-loaded unsaturated esterified alginate/gellan gum microspheres: in vitro and in vivo assessment. Int J Biol Macromol. 2013;57:129–37.

    Article  CAS  Google Scholar 

  23. Passos MF, Dias DRC, Bastos GNT, Jardini AL, Benatti ACB, Dias CGBT, Filho RM. pHENA hydrogels synthesis, kinetics and in vitro tests. J Therm Anal Calorim. 2016;125:361–8.

    Article  CAS  Google Scholar 

  24. de Carvalho CL, Rosa DS. Thermal oxidative degradation of polypropylene-containing pro-oxidants. J Therm Anal Calorim. 2014;115:1627–32.

    Article  Google Scholar 

  25. Bier JM, Verbeek CJR, Lay MC. Identifying transition temperatures in bloodmeal-based thermoplastics using material pocket DMTA. J Therm Anal Calorim. 2013;112:1303–15.

    Article  CAS  Google Scholar 

  26. Ma YH, Bai TC, Wang F. The physical and chemical properties of the polyvinylalcohol/polyvinylpyrrolidone/hydroxyapatite composite hydrogel. Mater Sci Eng C. 2016;59:948–57.

    Article  CAS  Google Scholar 

  27. Appel EA, Loh XJ, Jones ST, Biedermann F, Dreiss CA, Scherman OA. Ultrahigh-water-content supramolecular hydrogels exhibiting multistimuli responsiveness. J Am Chem Soc. 2012;134:11767–73.

    Article  CAS  Google Scholar 

  28. Ratner BD, Hoffman AS, Hanson SR, Harker LA, Whiffen JD. Blood-compatibility-water-content relationships for radiation-grafted hydrogels. J Polym Sci: Polym Symp. 1979;66:363–75.

    CAS  Google Scholar 

  29. Hassan CM, Peppas NA. Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. In: Chang JY, Godovsky DY, Hassan CM, editors. Biopolymer PVA hydrogels anionic polymerisation nanocomposites. Adv. Polym. Sci. 2000; 153. p. 37–65.

  30. Liu LM, Wang BH, Gao Y, Bai TC. Chitosan fibers enhanced gellan gum hydrogels with superior mechanical properties and water-holding capacity. Carbohydr Polym. 2013;97:152–8.

    Article  CAS  Google Scholar 

  31. Miyoshi E, Takaya T, Nishinari K. Gel–sol transition in gellan gum solutions. I. Rheological studies on the effects of salts. Food Hydrocoll. 1994;8:505–27.

    Article  CAS  Google Scholar 

  32. Mahajan HS, Gattani SG. Gellan gum based microparticles of metoclopromide hydrochloride for intranasal delivery: development and evaluation. Chem Pharm Bull. 2009;57:388–92.

    Article  CAS  Google Scholar 

  33. Yuguchi Y, Urakawa H, Kitamura S, Wataoka I, Kajiwara K. The sol–gel transition of gellan gum aqueous solutions in the presence of various metal salts. In: Nishinari K, editor. Physical chemistry and industrial application of gellan gum. Progress in Colloid and Polymer Science; 2003. p. 41–7.

  34. Liang JJ, Huang Y, Zhang L, Wang Y, Ma YF. Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater. 2009;19:2297–302.

    Article  CAS  Google Scholar 

  35. Sudhamani SR, Prasad MS, Sankar KU. DSC and FTIR studies on gellan and polyvinyl alcohol (PVA) blend films. Food Hydrocoll. 2003;17:245–50.

    Article  CAS  Google Scholar 

  36. Ricciardi R, Gaillet C, Ducouret G, Lafuma F, Laupretre F. Investigation of the relationships between the chain organization and rheological properties of atactic poly(vinyl alcohol) hydrogels. Polymer. 2003;44:3375–80.

    Article  CAS  Google Scholar 

  37. Pelletier S, Hubert P, Payan E, Marchal P, Choplin L, Dellacherie E. Amphiphilic derivatives of sodium alginate and hyaluronate for cartilage repair: rheological properties. J Biomed Mater Res. 2001;54:102–8.

    Article  CAS  Google Scholar 

  38. Miyoshi E, Takaya T, Nishinari K. Rheological and thermal studies of gel–sol transition in gellan gum aqueous solutions. Carbohydr Polym. 1996;30:109–19.

    Article  CAS  Google Scholar 

  39. Zhao L, Mitomo H, Zhai M, Yoshii F, Nagasawa N, Kume T. Synthesis of antibacterial PVA/CM-chitosan blend hydrogels with electron beam irradiation. Carbohydr Polym. 2003;53:439–46.

    Article  CAS  Google Scholar 

  40. Samal KS, Fernandes EG, Chiellini F, Chiellini E. Thermal analysis of PVA/CNTs 2D membrane. J Therm Anal Calorim. 2009;97:859–64.

    Article  CAS  Google Scholar 

  41. Dong WF, Wang Y, Huang ChG, Xiang ShF, et al. Enhanced thermal stability of poly(vinyl alcohol) in presence of melanin. J Therm Anal Calorim. 2014;115:1661–8.

    Article  CAS  Google Scholar 

  42. Peppas NA, Merrill EW. Crystallization kinetics of poly(vinyl alcohol). J Appl Polym Sci. 1982;27:4787–97.

    Article  CAS  Google Scholar 

  43. Tόth K, Aigner Z, Wellinger K, Szabó-Révész P, Sohár G. Thermoanalytical investigation of different hip joint arthropathies. Thermochim Acta. 2010;506:94–7.

    Article  Google Scholar 

  44. Genieva SD, Vlaev LT, Atanassov AN. Study of the thermooxidative degradation kinetics of poly (tetrafluoroethene) using iso-conversional calculation procedure. J Therm Anal Calorim. 2010;99:551–61.

    Article  CAS  Google Scholar 

  45. Wang JX, Zhao HB. Error evaluation on pyrolysis kinetics of sawdust using iso-conversional methods. J Therm Anal Calorim. 2016;124:1635–40.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was funded by state and local joint engineering laboratory for novel functional polymeric materials, and by the priority academic program development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tongchun Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Wen, Y. & Bai, T. Thermal behavior of polyvinyl alcohol–gellan gum–Al3+ composite hydrogels with improved network structure and mechanical property. J Therm Anal Calorim 127, 2447–2457 (2017). https://doi.org/10.1007/s10973-016-5757-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5757-3

Keywords

Navigation