Skip to main content
Log in

Enhanced thermal stability of poly(vinyl alcohol) in presence of melanin

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A novel method was developed to enhance the thermal stability of PVA by using natural and synthetic melanins from oxidation of dopamine. Thermogravimetric (TG) curves indicated that the synthetic melanin changed the thermal degradation behaviors of PVA and largely improved the decomposed temperature by 80–110 °C in nitrogen when incorporation of synthetic melanin with low content (0.5–2 mass%). The thermal degradation kinetics suggested the activation energies of PVA/synthetic melanin blends were much higher than these of pure PVA. Isothermal TG curves conformed that the PVA/synthetic melanin blends exhibited more thermal stability than pure PVA. Moreover, the chemical structure changes of macromolecular after degradation were characterized by using fourier transform infrared and the results suggested that elimination reaction on the first degradation step did not took place for the PVA/synthetic melanin blends at 270 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Scheme 3
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hay JM, Lyon D. Vinyl alcohol: a stable gas phase species. Nature. 1967;216:790–1.

    Article  CAS  Google Scholar 

  2. Peppas NA, Merrill EW. Development of semicrystalline PVA networks for biomedical application. J Biomed Mater Res. 1977;11:423–34.

    Article  CAS  Google Scholar 

  3. Hoffman AS. Hydrogels for biomedical application. Ann N Y Acad Sci. 2001;944:62–73.

    Article  CAS  Google Scholar 

  4. Bergstrom C. Gastight material. EP 0,389,695 A1; 1989.

  5. Finch CA. Polyvinyl alcohol-developments. New York: Wiley; 1992. p. 753.

    Google Scholar 

  6. Kleiner F. Plasticized polyvinyl alcohol. US 4529666 A; 1985.

  7. Coker JN, Del W. Melt extrudable polyvinyl alcohol compositions. US 3997489 A; 1976.

  8. Jang J, Lee DK. Plasticizer effect on the melting and crystallization behavior of polyvinyl alcohol. Polymer. 2003;44:8139–46.

    Article  CAS  Google Scholar 

  9. Ku TH, Lin CA. Shear flow properties and melt spinning of thermoplastic polyvinyl alcohol melts. Text Res J. 2005;75(9):681–8.

    Article  CAS  Google Scholar 

  10. Jiang XC, Tan BW, Zhang XF. Studies on the properties of poly(vinyl alcohol) film plasticized by urea/ethanolamine mixture. J Appl Polym Sci. 2012;125:697–703.

    Article  CAS  Google Scholar 

  11. Robert DW. Melt extrudable cold water-soluble films. US 4206101 A; 1980.

  12. Famili A, Marte FL. Extrudable polyvinyl alcohol compositions. EP 0415357 B1; 1990.

  13. Nishino T, Kani S, Gotoh K, Nakamae K. Melt processing of poly(vinyl alcohol)) through blending with sugar pendant polymer. Polymer. 2002;43:2869–73.

    Article  CAS  Google Scholar 

  14. Arnow LE. The preparation of dopa-melanin. Science. 1938;87:308.

    Article  CAS  Google Scholar 

  15. Andrew ER, Bradbury A, Eades RG. The preparation of dopa-melanin. Nature. 1959;183:1802.

    Article  CAS  Google Scholar 

  16. Felix CC, Hyde JS, Sealy RC. Interactions of melanin with metal ions. Electron spin resonance evidence for chelate complexes of metal ions with free radicals. J Am Chem Soc. 1978;100:3922–6.

    Article  CAS  Google Scholar 

  17. Duff GA, Roberts JE, Foster N. Analysis of the structure of synthetic and natural melanins by solid-phase NMR. Biochemistry. 1988;27:7112–6.

    Article  CAS  Google Scholar 

  18. Ito S. A chemist’s view of melanogenesis. Pigment Cell Res. 2003;16:230–6.

    Article  CAS  Google Scholar 

  19. Deziderio SN, Brunello CA, da Silva MIN, Cotta MA, Graeff CFO. Thin films of synthetic melanin. J Non-Cryst Solids. 2004;338:634–8.

    Article  Google Scholar 

  20. Brenner M, Hearing VJ. The protective role of melanin against UV damage in human skin. Photochem Photobiol. 2008;84:539–49.

    Article  CAS  Google Scholar 

  21. Meredith P, Sarna T. The physical and chemical properties of eumelanin. Pigment Cell Res. 2006;19:572–94.

    Article  CAS  Google Scholar 

  22. Bettinger CJP, Bruggeman JP, Misra A. Biocompatibility of biodegradable semiconducting melanin films for nerve tissue engineering. Biomaterials. 2009;30:3050–7.

    Article  CAS  Google Scholar 

  23. Rozanowska M, Sarna T, Land EJ, Truscott TG. Free Radic Biol Med. 1999;26:518–25.

    Article  CAS  Google Scholar 

  24. Dunford R, Land EJ, Rozanowska M. Free radical scavenging properties of melanin interaction of eu- and pheo-melanin models with reducing and oxidising radicals. Free Radic Biol Med. 1995;19:735–40.

    Article  CAS  Google Scholar 

  25. Shanmuganathan K, Cho JH, Iyer P. Thermooxidative stabilization of polymers using natural and synthetic melanins. Macromolecules. 2011;44:9499–507.

    Article  CAS  Google Scholar 

  26. Alexy P, Bakos D, Crkonova G. Blends of polyvinylalcohol with collagen hydrolysate: thermal degradation and processing properties. Macromol Symp. 2001;170:41–50.

    Article  CAS  Google Scholar 

  27. Zhao W, Yamamoto Y, Tagawa S. Radiation effects on the thermal degradation of poly(vinyl chloride) and poly(vinyl alcohol). J Polym Sci. 1998;36:3089–95.

    Article  CAS  Google Scholar 

  28. Ju KY, Lee Y, Lee S, Park SB, Lee JK. Bioinspired polymerization of dopamine to generate melanin-like nanoparticles having an excellent free-radical-scavenging property. Biomacromolecules. 2011;12(3):625–32.

    Article  CAS  Google Scholar 

  29. Simon JD. Spectroscopic and dynamic studies of the epidermal chromophores trans-urocanic acid and eumelanin. Acc Chem Res. 2000;33:307–13.

    Article  CAS  Google Scholar 

  30. Holland BJ, Hay JN. The thermal degradation of poly(vinyl alcohol). Polymer. 2001;42:6775–83.

    Article  CAS  Google Scholar 

  31. Li J, Suo J, Wang S. The effect of copper(II) on the thermal and mechanical properties of poly(vinyl alcohol)/silica hybrid. Polym Eng Sci. 2009;49(8):1484–90.

    Article  Google Scholar 

  32. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part B. 1966;4:323–8.

    CAS  Google Scholar 

  33. Waldman WR, Marco A. Thermo-mechanical degradation of polypropylene, low-density polyethylene and their 1:1 blend. Polym Degrad Stab. 1998;60:301–8.

    Article  CAS  Google Scholar 

  34. Réti T. Short comments on kinetic models involving changes in activation energy. J Therm Anal Calorim. 2000;62:325–7.

    Article  Google Scholar 

  35. Dharwadkar SR. A simple method of determining the activation energy of an isothermal solid-state decomposition reaction. J Therm Anal Calorim. 1980;18(1):1465–9.

    Article  Google Scholar 

  36. Babinski P. Kinetics of coal and char oxycombustion studied by TG–FTIR. J Therm Anal Calorim. 2013;. doi:10.1007/s10973-013-3002-x.

    Google Scholar 

  37. Vyazovkin S, Sbirrayyuoli N. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun. 2006;27(18):1515–32.

    Article  CAS  Google Scholar 

  38. Lue SJ, Chen JY, Yang JM. Crystallinity and stability of poly(vinyl alcohol)-fumed silica mixed matrix membranes. J Macromol Sci Part B. 2007;47(1):39–51.

    Article  Google Scholar 

  39. Bridelli MG, Crippa PR. Infrared and water sorption studies of the hydration structure and mechanism in natural and synthetic melanin. J Phys Chem B. 2010;114(29):9381–90.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (51373070, 51003042, 51173072) and Program for New Century Excellent Talents in University (NCET-12-0884).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weifu Dong or Mingqing Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, W., Wang, Y., Huang, C. et al. Enhanced thermal stability of poly(vinyl alcohol) in presence of melanin. J Therm Anal Calorim 115, 1661–1668 (2014). https://doi.org/10.1007/s10973-013-3419-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3419-2

Keywords

Navigation