Skip to main content
Log in

Thermal degradation of esters/ethers derived from tartaric acid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Because of the increasing concern about the potential risks to human health presented by phthalate esters and, in particular, di(2-ethylhexyl)phthalate the development of non-toxic, environmentally-friendly plasticizers is rather urgent. Biobased materials derived from an annually renewable source are particularly attractive in this regard. A series of esters/ethers generated from tartaric acid, an edible, renewable by-product of wine-making, has been synthesized and fully characterized using chromatographic, spectroscopic and thermal methods. The thermal degradation characteristics of these compounds have been established using thermogravimetry and infrared spectroscopy. These materials are stable to temperatures approaching 200 °C and degrade via elimination processes. They should function as effective plasticizers for a variety of polymeric materials including poly(vinyl chloride).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Fig. 8
Fig. 9
Scheme 3
Fig. 10

Similar content being viewed by others

References

  1. Chen G-Q, Patel MK. Plastics derived from biological sources: present and future: a technical and environmental review. Chem Rev. 2012;112:2082–99.

    Article  CAS  Google Scholar 

  2. Ravichandran S, Nagarajan S, Ku BC, Coughlin B, Emrick T, Kumar J, Nagarajan R. Halogen-free ultra-high flame retardant polymers through enzyme catalysis. Green Chem. 2012;14:819–24.

    Article  CAS  Google Scholar 

  3. Rahman M, Brazel CS. The plasticizer market: an assessment of traditional plasticizers and research trends to meet new challenges. Prog Polym Sci. 2004;29:1223–48.

    Article  CAS  Google Scholar 

  4. Arendt WD, MaBride EL, Hanes RD. New dibenzoate plasticizer blends for pvc applications. J Vinyl Addit Technol. 2014;20:134–42.

    Article  Google Scholar 

  5. Gil N, Saska M, Negulescu I. Evaluation of the effects of biobased plasticizers on the thermal and mechanical properties of poly(vinyl chloride). J Appl Polym Sci. 2006;102:1366–73.

    Article  CAS  Google Scholar 

  6. Calo E, Greco A, Maffezzoli A. Effects of diffusion of a naturally-derived plasticizer for soft PVC. Polym Degrad Stab. 2011;96:784–9.

    Article  CAS  Google Scholar 

  7. Bouchareb B, Benaniba MT. Effects of epoxidized sunflower oil on the mechanical and dynamical analysis of plasticized poly(vinyl chloride). J Appl Polym Sci. 2008;107:3442–50.

    Article  CAS  Google Scholar 

  8. Wypych G. Handbook of plasticizers. Toronto, ON: ChemTec Publishing; 2012.

    Google Scholar 

  9. Gachter R, Muller H. Plastics additives handbook: stabilizers, fillers, reinforcements, colorants for thermoplastics. 4th ed. Munich: Hanser Publishers/Oxford University Press; 2003.

    Google Scholar 

  10. Lutz JT. Thermoplastic polymer additives: theory and practice. New York: Marcel Dekker Inc; 1989.

    Google Scholar 

  11. Mohsin M, Hossin A, Haik Y. Thermomechanical properties of poly(vinyl alcohol) plasticized with varying ratios of sorbitol. Mater Sci Eng A. 2011;528:925–30.

    Article  Google Scholar 

  12. Zoller A, Marcilla A. Soft PVC foams: study of the gelation, fusion, and foaming processes. I. phthalate ester plasticizers. J Appl Polym Sci. 2011;121:1495–505.

    Article  CAS  Google Scholar 

  13. De Anda R, Fillot LA, Rossi S, Long D, Sotta P. Influence of the sorption of polar and non-polar solvents on the glass transition temperature of polyamide 6,6 amorphous phase. Polym Eng Sci. 2011;51:2129–35.

    Article  Google Scholar 

  14. Ambrogi V, Brostow W, Carfagna C, Pannico M, Persico P. Plasticizer migration from cross-linked flexible PVC: effects on tribology and hardness. Polym Eng Sci. 2012;52:211–7.

    Article  CAS  Google Scholar 

  15. Navarro R, Perrino MP, Tardajos MG, Reinecke H. Phthalate plasticizers covalently bound to PVC: plasticization with suppressed migration. Macromolecules. 2010;43:2377–81.

    Article  CAS  Google Scholar 

  16. Lorz PM, Towae FK, Enke W. Phthalic acid derivatives, Ullmann’s encyclopedia of industrial chemistry. Weinheim: Wiley-VCH; 2002.

    Google Scholar 

  17. Tickner JA, Schettler T, Guidotti T, McCally M, Rossi M. Health risks posed by use of di-(2-ethylhexyl)phthalate (DEHP) in PVC medical devices: a critical review. Am J Ind Med. 2001;39:100–11.

    Article  CAS  Google Scholar 

  18. Crespo J, Balart R, Sanchez I, Lopez J. Substitution of di-(2-ethylhexyl)phthalate by Di(isononyl) cyclohexane-1,2-dicarboxylate as a plasticizer for industrial vinyl plastisol formulations. J Appl Polym Sci. 2007;104:1215–20.

    Article  CAS  Google Scholar 

  19. Zhou J, Ritter H. Copolyesters as non-toxic plasticizers. Polym Int. 2011;60:1158–61.

    Article  CAS  Google Scholar 

  20. VanVlict EDS, Reitano EM, Chhabra JS, Bergen GP, Whyatt RM. A review of alternatives to di-(2-ethylhexyl)phthalate-containing medical devices in the neonatal intensive care unit. J Perinatol. 2011;31:551–60.

    Article  Google Scholar 

  21. Newman MS, Sujeeth PK. Conversion of aromatic and α, β- unsaturated aldehydes to dichlorides by thionyl chloride and dimethylformamide. J Org Chem. 1978;43:4367–9.

    Article  CAS  Google Scholar 

  22. Montalbetti AGN, Falque V. Amide bond formation and peptide coupling. Tetrahedron. 2005;61:10827–52.

    Article  CAS  Google Scholar 

  23. Yuan HS, Huang ZT. Synthesis of chiral calix[4]arenes bearing tartaric ester moieties. Tetrahedron Asymmetry. 1999;10:429–37.

    Article  CAS  Google Scholar 

  24. Zhou X, Liu W-J, Ye J-L, Huang P-Q. A versatile approach to pyrrolidine azasugars and homoazasugars based on a highly diastereoselective reductive benzyloxymethylation of protected tartarimide. Tetrahedron. 2007;63:6346–57.

    Article  CAS  Google Scholar 

  25. Demirbas A. Progress and recent trends in biodiesel fuels. Energy Convers Manage. 2009;50:14–34.

    Article  CAS  Google Scholar 

  26. Lima G, Soares VCD, Ribeiro EB, Carvalho DA, Cardoso ECV, Rassi FC, Mundim KC, Rubim JC, Suarez PAZ. Diesel-like fuel obtained by pyrolysis of vegetable oils. J Anal Appl Pyrolysis. 2004;71:987–96.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bob A. Howell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Howell, B.A., Sun, W. Thermal degradation of esters/ethers derived from tartaric acid. J Therm Anal Calorim 122, 1167–1175 (2015). https://doi.org/10.1007/s10973-015-4934-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4934-0

Keywords

Navigation