Skip to main content
Log in

Thermal decomposition of molten ammonium nitrate (AN)

Chemical equilibrium in molten AN

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Raman spectra of ammonium nitrate (AN) above its melting point of 443 K and decomposition temperature of 533 K were acquired, and the thermal properties of AN were assessed using differential scanning calorimetry (DSC) so as to obtain a better understanding of the condensed phase decomposition. The Raman spectra of molten AN at both 443 and 533 K exhibited a strong peak at 1043 cm−1, assigned to the ν1 vibrational stretching mode of the NO 3 group, and a 710 cm−1 peak attributed to the δ4 bending mode of the NO 3 group, whereas no peak was observed at approximately 940 cm−1 due to the O′–NO2 stretching mode of HNO3. Chemical equilibrium calculations based on the reaction NO 3  + NH +4 ⇌ HNO3 + NH3 demonstrated that the concentration of HNO3 gradually increases with temperature, although the HNO3 to NO 3 ratio was still only approximately 0.0034, even at 533 K. Thus, molten AN was found to contain primarily NO 3 and only a minor amount of liquid HNO3 over the temperature range analyzed. The heat flow associated with condensed phase decomposition was simulated based on the assumption that the decomposition rate of AN is given by \( - {\text{d}}C_{\text{AN}} /{\text{d}}t = 10^{9.4} { \exp }\left( { - 125520/{RT}} \right)C_{{{\text{NH}}_{4}^{ + } }} C_{{{\text{HNO}}_{3} }} \) and that \( C_{{{\text{NH}}_{4}^{ + } }} \) and \( C_{{{\text{HNO}}_{3} }} \) are constant due to chemical equilibrium. The heat flow curves thus calculated were in good agreement with the experimental DSC data acquired at 5.1 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Oommen C, Jain SR. Ammonium nitrate: a promising rocket propellant oxidizer. J Hazard Mater. 1999;67:253–81.

    Article  CAS  Google Scholar 

  2. Oxley JC, Smith JL, Wang W. Compatibility of ammonium nitrate with monomolecular explosives. Part II. Nitroarenes. J Phys Chem. 1994;98:3901–7.

    Article  CAS  Google Scholar 

  3. Marlair G, Kordek M. Safety and security issues relating to low capacity storage of AN-based fertilizers. J Hazard Mater. 2005;A123:13–28.

    Article  Google Scholar 

  4. Dechy N, Bourdeaux T, Ayrault A, Kordek M, Coze JL. First lessons of the Toulouse ammonium nitrate disaster, 21st September 2001, AZF plant, France. J Hazard Mater. 2004;111:131–8.

    Article  CAS  Google Scholar 

  5. Sinditskii VP, Egorshev VY, Levshenkov AI, Serushkin VV. Ammonium nitrate: combustion mechanism and the role of additives. Propellants Explos Pyrotech. 2005;30:269–80.

    Article  CAS  Google Scholar 

  6. Sinditskii VP, Egorshev VY, Serushkin VV, Filatov SA. Combustion of energetic materials controlled by condensed-phase reactions. Combust Explos Shock Waves. 2012;48:81–99.

    Article  Google Scholar 

  7. Kajiyama K, Izato Y, Miyake A. Thermal characteristics of ammonium nitrate, carbon, and copper(II) oxide mixtures. J Therm Anal Calorim. 2013;113:1475–80.

    Article  CAS  Google Scholar 

  8. Izato Y, Miyake A, Echigoya H. Influence of the physical properties of carbon on the thermal decomposition behavior of ammonium nitrate and carbon mixtures. Sci Technol Energ Mater. 2009;70:101–4.

    CAS  Google Scholar 

  9. Izato Y, Date S, Miyake A. Combustion characteristics of ammonium nitrate and carbon mixtures based on a thermal decomposition mechanism. Propellants Explos Pyrotech. 2013;38:129–35.

    Article  CAS  Google Scholar 

  10. Izato Y, Kajiyama K, Miyake A. Thermal decomposition mechanism of ammonium nitrate and copper(II) oxide mixtures. Sci Technol Energ Mater. 2014;75:128–33.

    Google Scholar 

  11. Miyake A, Izato Y. Thermal decomposition behaviors of ammonium nitrate and carbon mixtures. Int J Energ Mater Chem Propuls. 2010;9:467–75.

    Google Scholar 

  12. Matsunaga H, Habu H, Miyake A. Thermal behavior of new oxidizer ammonium dinitramide. J Therm Anal Calorim. 2013;111:1183–8.

    Article  CAS  Google Scholar 

  13. Matsunaga H, Habu H, Miyake A. Influences of aging on thermal decomposition mechanism of high performance oxidizer ammonium dinitramide. J Therm Anal Calorim. 2013;113:1387–94.

    Article  CAS  Google Scholar 

  14. Oxley JC, Smith JL, Rogers E, Yu M. Ammonium nitrate: thermal stability and explosivity modifiers. Thermochim Acta. 2002;384:23–45.

    Article  CAS  Google Scholar 

  15. Brower KR, Oxley JC, Tewari MP. Evidence for hemolytic decomposition of ammonium nitrate at high temperature. J Phys Chem. 1989;93:4029–33.

    Article  CAS  Google Scholar 

  16. Manelis GB, Nazin GM, Rubtsov YI, Strunin VA. Thermal decomposition and combustion of explosives and propellants. New York: Taylor & Francis; 2003. p. 175–83.

    Google Scholar 

  17. Ratcliffe CI, Irish DE. Vibrational spectral studies of solutions at elevated temperatures and pressures. VII. Raman spectra and dissociation of nitric acid. Can J Chem. 1985;63:3521–5.

    Article  CAS  Google Scholar 

  18. Lucas H, Petitet J. High pressure Raman spectroscopy of nitric acid. J Phys Chem A. 1999;103(45):8952–8.

    Article  CAS  Google Scholar 

  19. Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I, Bailey SM, Churney KL, Nuttall RL. The NBS tables of chemical thermodynamic properties. J Phys Chem Ref Data. 1982;11(supl.2):67–72.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-ichiro Izato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izato, Yi., Miyake, A. Thermal decomposition of molten ammonium nitrate (AN). J Therm Anal Calorim 122, 595–600 (2015). https://doi.org/10.1007/s10973-015-4762-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4762-2

Keywords

Navigation