Skip to main content
Log in

Recycling sulfur and iron resources in the waste ferrous sulfate

Mechanism and kinetic study of the decomposition reaction

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Many methods have been used to treat ferrous sulfate, but the large volume of waste ferrous sulfate produced has become a bottleneck for the sustainable development of the titanium dioxide industry in China. However, a newly developed process can utilize the massive volumes of waste, thereby facilitating the sulfur cycle and the recycling of iron resources, where the ferric sulfate obtained from ferrous sulfate by oxidation is decomposed reductively by pyrite, and the decomposition products are magnetite and sulfur dioxide. The reductive decomposition of ferric sulfate by pyrite is a key step in this process. In this study, thermodynamic analysis, tubular reactor experiments, thermogravimetric analysis, X-ray diffraction, and scanning electron microscopy were used to analyze the mechanism and to determine the kinetic model of the decomposition reaction in a nitrogen atmosphere. The results of the reaction mechanism analysis showed that the process involved in the generation of Fe3O4 is a two-step reaction, i.e., pyrite reacts directly with ferric sulfate to produce Fe2O3, before Fe2O3 reacts with pyrite to generate Fe3O4. Accordingly, the results of the kinetic analysis indicated that the first process follows an n-th order model with autocatalysis (C n), n = 1.344; and the second process follows the Avrami–Erofe’ev nuclei growth model (A n), n = 0.520.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Vondruska M, Bednarik V, Sild M. Stabilization/solidification of waste ferrous sulphate from titanium dioxide production by fluidized bed combustion product. Waste Manag (Oxford). 2001;21:11–6.

    Article  CAS  Google Scholar 

  2. Zhu XY, Xu GJ, Liu CH. Upgrading of China’s Titanium Dioxide industry from the perspective of clean production. Remote Sensing, Environment and Transportation Engineering 2011.

  3. Wenqian T. Clean production and three wastes disposal of sulfate process titanium dioxide. Chem Eng Des. 2011;21:42–5.

    Google Scholar 

  4. Changsong W. Discussion on current advance new methods of energy saving and emission reduction in titanium industry. Inorg Chem Ind. 2010;4:8–10.

    Google Scholar 

  5. Agrawal A, Kumari S, Sahu KK. Iron and copper recovery/removal from industrial wastes: a review. Ind Eng Chem Res. 2009;48:6145–61.

    Article  CAS  Google Scholar 

  6. Xueshuang Z, Chunxia C. Development status and environmental policy of titanium dioxide industry in China [J]. Environ Prot Chem Ind. 2009;3:226–9.

    Google Scholar 

  7. Ludwig RD, Su C, Lee TR, Wilkin RT, Acree SD, Ross RR, et al. In situ chemical reduction of Cr(VI) in groundwater using a combination of ferrous sulfate and sodium dithionite: a field investigation. Environ Sci Technol. 2007;41:5299–305.

    Article  CAS  Google Scholar 

  8. Ronghua P, Xiaoxiang L. Preparation of high-purity manganese dioxide by leaching manganese ore with ferrous sulfate from byproduct of titanium white. Inorg Chem Ind. 2006;38(12):48–50.

    Google Scholar 

  9. Ruan F, Zheng J, Mo B, Fan J, Deng S. Experimental investigation on synthesis of polyferric sulfate. J Chem Ind Eng (China). 2001;52:24–7.

    CAS  Google Scholar 

  10. Su CM, Ludwig RD. Treatment of hexavalent chromium in chromite ore processing solid waste using a mixed reductant solution of ferrous sulfate and sodium dithionite. Environ Sci Technol. 2005;39:6208–16. doi:10.1021/Es050185f.

    Article  CAS  Google Scholar 

  11. Yang M, Fu Y, Li G. Chromium-containing wastewater treatment by copperas byproduct in titanium dioxide production [J]. Mater Prot. 2005;6:55–7.

    Google Scholar 

  12. Yeling M. Production of black iron oxide by use of TiO2 production by-production ferrous sulfate [J]. Paint Coat Indu. 1997;1:31–2.

    Google Scholar 

  13. Zouboulis AI, Moussas PA, Vasilakou F. Polyferric sulphate: preparation, characterisation and application in coagulation experiments. J Hazard Mater. 2008;155:459–68. doi:10.1016/j.jhazmat.2007.11.108.

    Article  CAS  Google Scholar 

  14. Weiguo Y, Jingyu L. Economic benefits analysis of roasting pyrite blended with ferrous sulphate to produce sulphuric acid. Sulphuric Acid Ind. 2011;3:13–6. doi:10.3969/j.issn.1002-1507.2011.03.003.

    Google Scholar 

  15. Zhong W, Wei S, Zhang Y, Hu G, Zhang H. Circular economy model for titanium white production by sulphuric acid process. Sulphuric Acid Ind. 2010;4:1–5.

    CAS  Google Scholar 

  16. Huiming L, He H, Jiang W. Production practice of roasting pyrite blended with ferrous sulfate. Sulphuric Acid Ind. 2008;5:33–5.

    Google Scholar 

  17. Li Z, Ling Y, Yang W. Study on roasting equation of ferrous sulfate by roasting pyritic. Chem Eng. 2011;5:54–7.

    Google Scholar 

  18. Baldwin SA, Van Weert G. On the catalysis of ferrous sulphate oxidation in autoclaves by nitrates and nitrites. Hydrometallurgy. 1996;42:209–19.

    Article  CAS  Google Scholar 

  19. Kobe KA, Dickey W. Oxidation of ferrous sulfate solutions with oxygen. Ind Eng Chem. 1945;37:429–31.

    Article  CAS  Google Scholar 

  20. Gok O. Catalytic oxidation mechanism of oxy-nitrogen species NOx in FeSO4 electrolyte. Nitric Oxide. 2011;25:47–53.

    Article  CAS  Google Scholar 

  21. Ma L, Ning P, Zheng S, Niu X, Zhang W, Du Y. Reaction mechanism and kinetic analysis of the decomposition of phosphogypsum via a solid-state reaction. Ind Eng Chem Res. 2010;49:3597–602.

    Article  CAS  Google Scholar 

  22. Tanaka H. Thermal analysis and kinetics of solid state reactions. Thermochim Acta. 1995;267:29–44.

    Article  CAS  Google Scholar 

  23. He Y, Liao S, Chen ZP, Chai Q, Li Y, Su YY, et al. Application of isoconversional calculation procedure to non-isothermal kinetics study Part II. Thermal decomposition of NH4CuPO4H2O. J Therm Anal Calorim. 2013;111:313–21. doi:10.1007/s10973-012-2306-6.

    Article  CAS  Google Scholar 

  24. Georgieva V, Zvezdova D, Vlaev L. Non-isothermal kinetics of thermal degradation of chitin. J Therm Anal Calorim. 2013;111:763–71. doi:10.1007/s10973-012-2359-6.

    Article  CAS  Google Scholar 

  25. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  26. Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol (Sci Technol). 1971;16:22–31.

    Google Scholar 

  27. Chaiyo N, Muanghlua R, Niemcharoen S, Boonchom B, Seeharaj P, Vittayakorn N. Non-isothermal kinetics of the thermal decomposition of sodium oxalate Na2C2O4. J Therm Anal Calorim. 2012;107:1023–9. doi:10.1007/s10973-011-1675-6.

    Article  CAS  Google Scholar 

  28. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  29. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Nat Bur Stand. 1966;70:487–523.

    Article  CAS  Google Scholar 

  30. Du XJ, Li XD, Zou MS, Yang RJ, Pang SP. Thermal kinetic study of 1-amino-1,2,3-triazolium nitrate. J Therm Anal Calorim. 2014;115:1195–203. doi:10.1007/s10973-013-3405-8.

    Article  CAS  Google Scholar 

  31. Chen Z, Chai Q, Liao S, Chen X, He Y, Li Y, et al. Nonisothermal kinetic study: IV. comparative methods to evaluate e a for thermal decomposition of KZn2 (PO4)(HPO4) synthesized by a simple route. Ind Eng Chem Res. 2012;51:8985–91.

    Article  CAS  Google Scholar 

  32. Boonchom B. Kinetic and thermodynamic studies of MgHPO4·3H2O by non-isothermal decomposition data. J Therm Anal Calorim. 2009;98:863–71.

    Article  CAS  Google Scholar 

  33. Chen ZP, Chai Q, Liao S, He Y, Li Y, Wu WW, et al. Application of simplified version of advanced isoconversional procedure in non-isothermal kinetic study thermal decomposition of NH4Co0.9Zn0.1PO4 center dot H2O. J Therm Anal Calorim. 2013;113:649–57. doi:10.1007/s10973-012-2714-7.

    Article  CAS  Google Scholar 

  34. Opfermann J. Kinetic analysis using multivariate non-linear regression-I. Basic concepts. J Therm Anal Calorim. 2000;60:641–58. doi:10.1023/A:1010167626551.

    Article  CAS  Google Scholar 

  35. Liu W, Li G. Non-isothermal kinetic analysis of the thermal denaturation of type I collagen in solution using isoconversional and multivariate non-linear regression methods. Polym Degrad Stab. 2010;95:2233–40.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper is based on the results from the subject supported by National High Technology Research and Development Program of China (Grant No.2011AA06A106), Science and Technology Research Program of Sichuan Environmental Protection (No.2011HB003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, P., Jiang, B., Zhang, Z. et al. Recycling sulfur and iron resources in the waste ferrous sulfate. J Therm Anal Calorim 119, 2229–2237 (2015). https://doi.org/10.1007/s10973-014-4306-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4306-1

Keywords

Navigation