Skip to main content
Log in

Effect of oxygen and WO3 additive on anatase-to-rutile phase transformation in TiO2 nanoparticles

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Phase transformation of TiO2 powder (P25) and pure anatase (PA) was investigated under pure oxygen as well as vacuum from 500 to 1,000 °C. The rutile percentage calculated based on the XRD data was used to estimate the phase transformation process. It was found that the vacuum suppressed the phase transformation of P25 relative to pure oxygen atmosphere. A model was proposed to explain the effect of oxygen on the phase transformation of TiO2. Furthermore, P25 samples showed lower phase transformation temperature (between 600 and 800 °C) compared with PA (over 1,000 °C). The existed rutile phase in P25 was regarded as a transformation inducer due to an interface between anatase and rutile phases since the nucleation activation energy on the interface is lower than that on the surface. And this interface effect is also adopted to explain the role of additive WO3, which retarded the phase transformation of P25 but promoted the phase transformation of PA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lu CW, Cao Y, Webb C, Pan WP. Synthesis of TiO2 based on hydrothermal methods using elevated pressures and microwave conditions. J Therm Anal Calorim. 2014;116(3):1241–8.

    Article  CAS  Google Scholar 

  2. Habibi MH, Mokhtari R. Thermal properties of undoped, S-doped, Nb-doped, and S, Nb co-doped titania nanoparticles prepared by sol–gel method. J Therm Anal Calorim. 2013;112(3):1179–83.

    Article  CAS  Google Scholar 

  3. Zhang J, Xu Q, Li MJ, Feng ZC, Li C. UV Raman spectroscopic study on TiO2. II. Effect of nanoparticle size on the outer/inner phase transformations. J Phys Chem C. 2009;113(5):1698–704.

    Article  CAS  Google Scholar 

  4. Mahlambi MM, Mishra AK, Mishra SB, Krause RW, Mamba BB, Raichur AM. Comparison of rhodamine B degradation under UV irradiation by two phases of titania nano-photocatalyst. J Therm Anal Calorim. 2012;110(2):847–55.

    Article  CAS  Google Scholar 

  5. Ding XZ, Liu XH. Correlation between anatase-to-rutile transformation and grain growth in nanocrystlline titania powders. J Mater Res. 1998;13(9):2556–9.

    Article  CAS  Google Scholar 

  6. Zhang HZ, Banfield JF. Phase transformation of nanocrystalline anatase-to-rutile via combined interface and surface nucleation. J Mater Res. 2000;15(2):437–48.

    Article  CAS  Google Scholar 

  7. Gouma PI, Mills MJ. Anatase-to-rutile transformation in titania powders. J Am Ceram Soc. 2001;84:619–22.

    Article  CAS  Google Scholar 

  8. Gilbert B, Zhang HZ, Huang F, Finnegan MP, Waychunas GA, Banfield JF. Special phase transformation and crystal growth pathways observed in nanoparticles. Geochem Trans. 2003;4(4):20–7.

    Article  Google Scholar 

  9. Rezaee M, Khoie SMM. Mechanically induced polymorphic phase transformation in nanocrystalline TiO2 powder. J Alloy Compd. 2010;507:484–8.

    Article  CAS  Google Scholar 

  10. Wang GH, Xu L, Zhang J, Yin TT, Han DY. Enhanced photocatalytic activity of TiO2 powers (P25) via calcinations treatment. Int J Photoenergy. 2012; Article ID 265760: 9pages.

  11. Yu JG, Yu HG, Cheng B, Zhou M, Zhao X. Enhance photocatalytic activity of TiO2 powder (P25) by hydrothermal treatment. J Mol Catal A: Chem. 2006;253:112–8.

    Article  CAS  Google Scholar 

  12. Raj KJA, Viswanathan B. Effect of surface area, pore volume and particle size of P25 titania on the phase transformation of anatase to rutile. Indian J Chem A. 2009;48:1378–82.

    Google Scholar 

  13. Datye AK, Riegel G, Bolton JR, Huang M, Prairie MR. Microstructural characterization of a fumed titanium dioxide photocatalyst. J Solid State Chem. 1995;115:236–9.

    Article  CAS  Google Scholar 

  14. Ohno T, Sarukawa K, Tokieda K, Matsumura M. Morphology of TiO2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases. J Catal. 2001;203:82–6.

    Article  CAS  Google Scholar 

  15. Bickley RI, Gonzalez-Carreno T, Lees JS, Palmisano L, Tilley RJD. A structural investigation of titanium dioxide photocatalysts. J Solid State Chem. 1991;92:178–90.

    Article  CAS  Google Scholar 

  16. Su WG, Zhang J, Feng ZC, Chen T, Ying PL, Li C. Surface phases of TiO2 nanoparticles studied by UV Raman spectroscopy and FT-IR spectroscopy. J Phys Chem C. 2008;112:7710–6.

    Article  CAS  Google Scholar 

  17. Green IX, Buda C, Zhang Z, Neurock M, Yates JT. IR spectroscopic measurement of diffusion kinetics of chemisorbed pyridine through TiO2 particles. J Phys Chem C. 2010;114:16649–59.

    Article  CAS  Google Scholar 

  18. Zhu ZF, He XM, Zhao Y, Ren Q. Influence of WO3 additive on crystallite structural transformation of TiO2 powders. Rare Met Mater Eng. 2010;39(5):771–4.

    Article  CAS  Google Scholar 

  19. Yu XF, Wu NZ, Huang HZ, Xie YC, Tang YQ. A study on the monolayer dispersion of tungsten oxide on anatase. J Mater Chem. 2001;11:3337–42.

    Article  CAS  Google Scholar 

  20. Colon G, Sanchez-Espana JM, Hidalgo MC, Navio JA. Effect of TiO2 acidic pre-treatment on the photocatalytic properties for phenol degradation. J Photochem Photobiol A: Chem. 2006;179:20–7.

    Article  CAS  Google Scholar 

  21. Thompson TL, Yates JT. Surface science studies of the photoactivation of TiO2 new photochemical processes. Chem Rev. 2006;106:4428–53.

    Article  CAS  Google Scholar 

  22. Zhang Z, Lee J, Yates JT, Bechstein R, Lira E, Hansen J, Wendt S, Besenbacher F. Unraveling the diffusion of bulk Ti interstitials in rutile TiO2 (110) by monitoring their reaction with O adatoms. J Phys Chem C. 2010;114:3059–62.

    Article  CAS  Google Scholar 

  23. Jagtap N, Bhagwat M, Awati P, Ramaswamy V. Characterization of nanocrystalline anatase titania: an in situ HTXRD study. Thermochim Acta. 2005;427:37–41.

    Article  CAS  Google Scholar 

  24. King DA, Madey TE, Yates JT. Interaction of oxygen with polycrystalline tungsten.I. Sticking probabilities and desorption spectra. J Chem Phys. 1971;55:3236–46.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the National Natural Science Foundation of China for financial support to this work (No. 51302175 and No. 51272162). And this work was also supported by Program for Liaoning Excellent Talents in University (No. LJQ2014132) and Natural Science Foundation of Liaoning Province of China (No. 2013020132).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meihan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Wen, J., Sawada, Y. et al. Effect of oxygen and WO3 additive on anatase-to-rutile phase transformation in TiO2 nanoparticles. J Therm Anal Calorim 119, 435–439 (2015). https://doi.org/10.1007/s10973-014-4204-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4204-6

Keywords

Navigation