Skip to main content
Log in

Water sorption isotherm and glass transition temperature of freeze-dried Syzygium cumini fruit (jambolan)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The sorption isotherms analysis and glass transition temperature should provide important information about the role of water in food. Sorption/desorption isotherms of freeze-dried jambolan (FDJ) were determined at 15, 25 and 35 °C temperatures. The determination of glass transition temperature is also performed in order to establish packaging and storage conditions. The hygroscopic behavior of jambolan pulp after freeze-dried process was studied through sorption isotherms and models fit to experimental data. The freeze-dried material was highly hygroscopic and Peleg’s model showed the highest coefficient of determination and lower values of average deviation and relative average error estimated, therefore the best fit sorption isotherms. The lowest value of monolayer was 7.64 gH2O·100g −1db to 25 °C. At temperature higher than 17 °C (T g), the material become more amorphous and the site of interaction with water molecules becomes available. As conclusion, the material must be storage at temperatures below T g and low relative humidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Faria AF, Marques MC, Mercadante AZ. Identification of bioactive compounds from jambolão (Syzygium cumini) and antioxidant capacity evaluation in different pH conditions. Food Chem. 2011;126:1571–8.

    Article  CAS  Google Scholar 

  2. Banerjee A, Dasgupta N, De B. In vitro study of antioxidant activity of Syzygium cumini fruit. Food Chem. 2005;90:727–33.

    Article  CAS  Google Scholar 

  3. Valente A, Albuquerque TG, Sanches-Silva A, Costa HS. Ascorbic acid content in exotic fruits: A contribution to produce quality data for food composition databases. Food Res Int. 2011;44:2237–42.

    Article  CAS  Google Scholar 

  4. Fernandes FAN, Rodrigues S, Law CL, Mujumdar AS. Drying of exotic tropical fruits: a comprehensive review. Food Bioprocss Technol. 2011;4:163–85.

    Article  Google Scholar 

  5. Scott WJ. Water relations of food spoilage microorganisms. Adv Food Res. 1957;7(9):83–127.

    Article  CAS  Google Scholar 

  6. Ceballos AM, Giraldo GI, Orrego CE. Effect of freezing rate on quality parameters of freeze dried soursop fruit pulp. J Food Eng. 2012;111:360–5.

    Article  Google Scholar 

  7. Fabra MJ, Talens P, Moraga G, Martinez-Navarrete N. Sorption isotherm and state diagram of grapefruit as a tool to improve product processing and stability. J Food Eng. 2009;93:52–8.

    Article  CAS  Google Scholar 

  8. Mrad ND, Bonazzi C, Boudhrioua N, Kechaou N. Influence of sugar composition on water sorption isotherms and on glass transition in apricots. J Food Eng. 2012;111:403–11.

    Article  Google Scholar 

  9. Pavan MA, Schmidt SJ, Feng H. Water sorption behavior and thermal analysis of freeze-dried, refractance Window-dried and hot-air dried açaí (Euterpe oleracea Martius) juice. LWT Food Sci Technol. 2012;48:75–81.

    Article  CAS  Google Scholar 

  10. Silva AE, Silva LHM, Pena RS. Comportamento higroscópico do açaí e cupuaçu em pó. Ciênc Tecnol Aliment. 2008;28(4):895–901.

    Article  Google Scholar 

  11. Corrêa PC, Afonso-Júnior PC, Stringheta PC. Estudo do fenômeno de adsorção de água e seleção de modelos matemáticos para representar a higroscopicidade do café solúvel. Rev Bras Prod Agroind. 2000;2(1):19–25.

    Google Scholar 

  12. Hossain MD, Bala BK, Hossain MA, Mondol MRA. Sorption isotherms and heat of sorption of pineapple. J Food Eng. 2001;48:103–7.

    Article  Google Scholar 

  13. Perdomo J, Cova A, Sandoval AJ, García L, Laredo E, Müller AJ. Glass transition temperatures and water sorption isotherms of cassava starch. Carbohydr Polym. 2009;76:305–13.

    Article  CAS  Google Scholar 

  14. Diaz P, Lopez D, Matiacevich S, Osorio F, Enrione J. State diagram of salmon (Salmo salar) gelatin films. J Sci Food Agric. 2011;91:2558–65.

    Article  CAS  Google Scholar 

  15. Roos YH. Glass transition temperature and its relevance in food processing. Ann Rev Food Sci Technol. 2010;1:469–96.

    Article  CAS  Google Scholar 

  16. Bezerra TS, Costa JMC, Afonso MRA, Maia GA, Rocha EMFF. Comportamento higroscópico de pós de mangas das variedades coité e espada e avaliação das características físico-químicas. Ciênc Rural. 2010;40(10):2186–92.

    Article  CAS  Google Scholar 

  17. Ferreira CD, Pena RS. Comportamento higroscópico da farinha de pupunha (Bactris gasipaes). Ciênc Tecnol Aliment. 2003;23(2):251–5.

    Article  Google Scholar 

  18. Vieira AH, Figueirêdo RMF, Queiroz AJM. Isotermas de sorção de umidade da pitanga em pó. Rev de biol e ciênc da terra. 2007;7(1):11–20.

    Google Scholar 

  19. Gomes PMA, Figueirêdo RMF, Queiroz AJM. Caracterização e isotermas de adsorção de umidade da polpa de acerola em pó. Rev Bras Prod Agroind. 2002;4(2):157–65.

    Google Scholar 

  20. Lomauro CJ, Bakshi AS, Labuza TP. Moisture transfer properties of dry and semi moist foods. J Food Sci. 1985;50:397–400.

    Article  Google Scholar 

  21. Sing KSW, Everett DH, Haul R, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T. Reporting physisortion data for gas/solid systems. Pure Appl Chem. 1985;57(4):603–19.

    Article  CAS  Google Scholar 

  22. Yan Z, Sousa-Gallagher MJ, Oliveira FAR. Sorption isotherms and moisture sorption hysteresis of intermediate moisture content banana. J Food Eng. 2008;86:342–8.

    Article  Google Scholar 

  23. Corrêa PC, Goneli ALD, Resende O, Ribeiro DM. Obtenção e modelagem das isotermas de dessorção e do calor isostérico de dessorção para grãos de trigo. Rev Bras Prod Agroind. 2005;7(1):39–48.

    Google Scholar 

  24. Jaya S, Das H. Glass transition and sticky point temperatures and stability/mobility diagram of fruit powders. Food Bioprocss Technol. 2009;2:89–95.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliana Cordeiro Cardoso.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Santana, R.F., de Oliveira Neto, E.R., Santos, A.V. et al. Water sorption isotherm and glass transition temperature of freeze-dried Syzygium cumini fruit (jambolan). J Therm Anal Calorim 120, 519–524 (2015). https://doi.org/10.1007/s10973-014-4014-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4014-x

Keywords

Navigation