Skip to main content
Log in

Drying of Exotic Tropical Fruits: A Comprehensive Review

  • Review Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

This paper provides a capsule overview of recent experimental studies dealing with the drying of a large assortment of tropical and subtropical fruits, also called “exotic” fruits. The term exotic includes a number of tropical fruits that are not yet commonly found in global markets but do have the potential to do so in view of their appearance, taste, and textural and nutritional quality parameters. As the consumer is seeking diverse tastes and flavors without compromising on quality, it is logical to expect the market for dried exotic fruits to increase over the next decade. This review covers diverse drying techniques, drying kinetics, and key quality parameters of dried fruits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abers, J. E., & Wrolstad, R. E. (1979). Causative factors of colour deterioration in strawberry preserves during processing and storage. Journal of Food Science, 44, 75–78.

    Article  CAS  Google Scholar 

  • Abu-Goukh, A. A., & Abu-Sarra, A. F. (1993). Compositional changes during mango fruit ripening. University of Khartoum Journal of Agricultural Sciences, 1, 33–51.

    Google Scholar 

  • Adu, B., & Otten, L. (1996). Effect of increasing hygroscopicity on themicrowave heating of solid foods. Journal of Food Engineering, 27, 35–44.

    Article  Google Scholar 

  • Almeida, F. A. C., Ribeiro, C. F. A., Tobinaga, S., & Gomes, J. P. (2005). Otimização do processo de secagem osmótica na obtenção de produtos secos da manga Tommy Atkins. Revista Brasileira de Engenharia Agrícola e Ambiental, 9, 576–584.

    Article  Google Scholar 

  • Alves, D. G., Barbosa, J. L., Jr., Antonio, G. C., & Murr, F. E. X. (2005). Osmotic dehydration of acerola fruit (Malpighia punicifolia L.). Journal of Food Engineering, 68, 99–103.

    Article  Google Scholar 

  • Amellal, H., & Benamara, S. (2008). Vacuum drying of common date pulp cubes. Drying Technology, 26, 378–382.

    Article  Google Scholar 

  • Andrade, S. A. C., Barros Neto, B., Salgado, S. M., & Guerra, N. B. (2007). Influência de revestimentos comestíveis na redução de ganho de sólidos em jenipapos desidratados osmoticamente. Ciência e Tecnologia de Alimentos, 27, 39–43.

    Article  Google Scholar 

  • Andrés, A., Fito, P., Heredia, A., & Rosa, E. M. (2007). Combined drying technologies for development of high-quality shelf-stable mango products. Drying Technology, 25, 1857–1866.

    Article  Google Scholar 

  • Attabhanyo, R., Ngramsomsut, K., Attabhanyo, A., Arrayarungsarit, S., Chaowanapoonpon, Y., & Kitchaijaroon, J. (1998). Longan process industry. Faculty of Agriculture, Chiang Mai University.

  • Avila, I. M. L. B., & Silva, C. L. M. (1999). Modelling kinetics of thermal degradation of colour in peach puree. Journal of Food Engineering, 39, 161–166.

    Article  Google Scholar 

  • Azoubel, P. M., & Murr, F. E. X. (2003). Optimisation of osmotic dehydration of cashew apple (Anacardium occidentale L.) in sugar solutions. Food Science and Technology International, 9, 427–433.

    Article  Google Scholar 

  • Azuara, E., Flores, E., & Beristain, C. I. (2009). Water diffusion and concentration profiles during osmodehydration and storage of apple tissue. Food and Bioprocess Technology, 2, 361–367.

    Article  CAS  Google Scholar 

  • Bakshi, J. C., & Singh, P. (1974). The ber—A good choice for semi-arid and marginal soils. Indian Horticulture, 19, 27–30.

    Google Scholar 

  • Barreiro, J. A., Milano, M., & Sandoval, A. J. (1997). Kinetics of colour change of double concentrated tomato paste during thermal treatment. Journal of Food Engineering, 33, 359–371.

    Article  Google Scholar 

  • Bashir, H. A., & Abu-Goukh, A. A. (2003). Compositional changes during guava fruit ripening. Food Chemistry, 80, 557–563.

    Article  CAS  Google Scholar 

  • Bellagha, S., Sahli, A., & Farhat, A. (2008). Desorption isotherms and isosteric heat of three Tunisian date cultivars. Food Bioprocess Technol, 1, 270–275.

    Article  Google Scholar 

  • Block, G., & Langseth, L. (1994). Antioxidant vitamins and disease prevention. Food Technology, 48, 80–84.

    Google Scholar 

  • Brito, E. S., & Narain, N. (2002). Physical and chemical characteristics of sapota fruit at different stages of maturation. Pesquisa Agropecuária Brasileira, 37, 567–572.

    Article  Google Scholar 

  • Cao, H., Zhang, M., Mujumdar, A. S., Du, W. H., & Sun, J. C. (2006). Optimization of osmotic dehydration of kiwifruit. Drying Technology, 24, 89–94.

    Article  CAS  Google Scholar 

  • Ceylan, I., Aktas, M., & Dogan, H. (2007). Mathematical modeling of drying characteristics of tropical fruits. Applied Thermal Engineering, 27, 1931–1936.

    Article  Google Scholar 

  • Chatchavalchokchai, N. (1987). Effect of some ruminants on seed quality of Phyllanthus emblica L., Elaeocarpus madopetalous P., Spondias pinnata K. and Terminalia chebula R. MSC thesis, Kasetsart University, Thailand.

  • Chen, S. C., Colins, J. L., McCarty, I. E., & Young, M. R. (1971). Blanching of white potatoes by microwave energy followed by boiling water. Journal of Food Science, 36, 742–743.

    Article  CAS  Google Scholar 

  • Chen, J. P., Tai, C. Y., & Chen, B. H. (2007). Effects of different drying treatments on the stability of carotenoids in Taiwanese mango (Mangifera indica L.). Food Chemistry, 100, 1005–1010.

    Article  CAS  Google Scholar 

  • Chin, S. T., Nazimah, S. A. H., Quek, S. Y., Che Man, Y., Rahman, R. A., & Mat Hashim, D. (2008). Changes of volatiles’ attribute in durian pulp during freeze- and spray-drying process. LWT–Food Science and Technology, 41, 1899–1905.

    CAS  Google Scholar 

  • Chong, C. H., Law, C. L., Cloke, M., Luqman Chuah, A., & Daud, W. R. W. (2008a). Drying kinetics, texture, color, and determination of effective diffusivities during sun drying of chempedak. Drying Technology, 26, 1286–1293.

    Article  Google Scholar 

  • Chong, C. H., Law, C. L., Cloke, M., Luqman Chuah, A., & Daud, W. R. W. (2008b). Drying kinetics and product quality of dried chempedak. Journal of Food Engineering, 88, 522–527.

    Article  Google Scholar 

  • Chong, C. H., Law, C. L., Cloke, M., Luqman Chuah, A., & Daud, W. R. W. (2009). Drying models and quality analysis of sun-dried ciku. Drying Technology, 27, 985–992.

    Article  CAS  Google Scholar 

  • Chua, K. J., Chou, S. K., Ho, J. C., Mujumdar, A. S., & Hawlader, M. N. A. (2000). Cyclic air temperature drying of guava pieces: Effects on moisture and ascorbic acid contents. Transactions IChemE, 78, Part C, pp. 72–78.

  • Chua, K. J., Mujumdar, A. S., Hawlader, M. N. A., Chou, S. K., & Ho, J. C. (2001). Batch drying of banana pieces—Effect of stepwise change in drying air temperature on drying kinetics and product colour. Food Research International, 34, 721–731.

    Article  Google Scholar 

  • Corzo, O., Bracho, N., & Alvarez, C. (2008). Water effective diffusion coefficient of mango slices at different maturity stages during air drying. Journal of Food Engineering, 87, 479–484.

    Article  Google Scholar 

  • Cruz, R. M. S., Vieira, M. C., Fonseca, S. C., & Silva, C. L. M. (2010). Impact of thermal blanching and thermosonication treatments on watercress (Nasturtium officinale) quality: thermosonication process optimization and microstructure evaluation. Food and Bioprocess Technology. doi:10.1007/s11947-009-0220-0.

  • Cunha, R. L., Cruz, A. G., & Menegalli, F. C. (2006). Effects of operating conditions on the quality of mango pulp dried in a spout fluidized bed. Drying Technology, 24, 423–432.

    Article  CAS  Google Scholar 

  • Datta, A. K. (2001). Mathematical modeling of microwave processing of foods: An overview. In Irudayaraj (Ed.), Food processing operation modeling: Design and analysis (pp. 147–187). New York: Marcel Dekker.

    Google Scholar 

  • Delgado, A. E., Zheng, L., & Sun, D. W. (2009). Influence of ultrasound on freezing rate of immersion-frozen apples. Food and Bioprocess Technology, 2, 263–270.

    Article  Google Scholar 

  • Dissa, A. O., Desmorieux, H., Bathiebo, J., & Koulidiati, J. (2008). Convective drying characteristics of Amelie mango (Mangifera indica L cv. ‘Amelie’) with correction for shrinkage. Journal of Food Engineering, 88, 429–437.

    Article  Google Scholar 

  • Dowling, C. F., & Morton, J. F. (1987). Avocado. In J. F. Morton (Ed.), Fruits of warm climates. Miami: Morton.

    Google Scholar 

  • Doymaz, I. (2004). Pretreatment effect on sun drying of mulberry fruits (Morus alba L.). Journal of Food Engineering, 65, 205–209.

    Article  Google Scholar 

  • Doymaz, I. (2006). Sun drying of figs: An experimental study. Journal of Food Engineering, 71, 403–407.

    Article  Google Scholar 

  • Falade, K. O., & Abbo, E. S. (2007). Air-drying and rehydration characteristics of date palm (Phoenix dactylifera L) fruits. Journal of Food Engineering, 79, 724–730.

    Article  Google Scholar 

  • Falade, K. O., & Adelakun, T. A. (2007). Effect of pre-freezing and solutes on mass transfer during osmotic dehydration and colour of oven-dried African star apple during storage. International Journal of Food Science and Technology, 42, 394–402.

    Article  CAS  Google Scholar 

  • Fathi, M., Mohebbi, M., & Razavi, S. M. A. (2010). Application of image analysis and artificial neural network to predict mass transfer kinetics and color changes of osmotically dehydrated kiwifruit. Food and Bioprocess Technology. doi:10.1007/s11947-009-0222-y.

  • Feng, H., & Tang, J. (1998). Microwave finish drying of diced apples in a spouted bed. Journal of Food Science, 63, 679–683.

    Article  CAS  Google Scholar 

  • Feng, H., Tang, J., Mattinson, D. S., & Fellman, J. K. (1999). Microwave and spouted bed drying of blueberries: The effect of drying and pretreatment methods on physical properties and retention of flavor volatiles. Journal of Food Processing and Preservation, 23, 463–479.

    Article  Google Scholar 

  • Fereidoon, S., Janitha, P. K., & Wanasundara, P. D. (1992). Phenolic antioxidants. Critical Reviews in Food Science and Nutrition, 32, 67–103.

    Article  Google Scholar 

  • Fernandes, F. A. N., & Rodrigues, S. (2007a). Ultrasound as pre-treatment for drying of fruits: Dehydration of banana. Journal of Food Engineering, 82, 207–214.

    Article  Google Scholar 

  • Fernandes, F. A. N., & Rodrigues, S. (2007b). Use of ultrasound as pretreatment for dehydration of melons. Drying Technology, 25, 1791–1796.

    Article  CAS  Google Scholar 

  • Fernandes, F. A. N., & Rodrigues, S. (2008a). Application of ultrasound and ultrasound-assisted osmotic dehydration in drying of fruits. Drying Technology, 26, 1509–1516.

    Article  CAS  Google Scholar 

  • Fernandes, F. A. N., & Rodrigues, S. (2008b). Dehydration of sapota (Acharas sapota L.) using ultrasound as pretreatment. Drying Technology, 26, 1232–1237.

    Article  CAS  Google Scholar 

  • Fernandes, F. A. N., Gallão, M. I., & Rodrigues, S. (2008a). Effect of osmotic dehydration and ultrasound pre-treatment on cell structure: melon dehydration. LWT–Food Science and Technology, 41, 604–610.

    CAS  Google Scholar 

  • Fernandes, F. A. N., Linhares, F. E., Jr., & Rodrigues, S. (2008b). Ultrasound as pre-treatment for drying of pineapple. Ultrasonics Sonochemistry, 15, 1049–1054.

    Article  CAS  Google Scholar 

  • Fernandes, F. A. N., Oliveira, F. I. P., & Rodrigues, S. (2008c). Use of ultrasound for dehydration of papayas. Food and Bioprocess Technology, 1, 339–345.

    Article  Google Scholar 

  • Fernandes, F. A. N., Gallão, M. I., & Rodrigues, S. (2009). Effect of osmosis and ultrasound on pineapple cell tissue structure during dehydration. Journal of Food Engineering, 90, 186–190.

    Article  Google Scholar 

  • Feskanich, D., Ziegler, R. G., Michaud, D. S., Giovannucci, E. L., Speizer, F. E., & Willett, W. C. (2000). Prospective study of fruit and vegetable consumption and risk of lung cancer among men and women. Journal of the National Cancer Institute, 92, 1812–1823.

    Article  CAS  Google Scholar 

  • Fleuriet, A., & Macheix, J. J. (2003). Phenolic acids in fruits and vegetables. In C. A. Rice-Evans & L. Packer (Eds.), Flavonoids in health and disease. New York: Marcel Dekker.

    Google Scholar 

  • Fuente-Blanco, S., Sarabia, E. R. F., Acosta-Aparicio, V. M., Blanco-Blanco, A., & Gallego-Juárez, J. Á. (2006). Food drying process by power ultrasound. Ultrasonics Sonochemistry, 44, e523–e527.

    Google Scholar 

  • Ganjloo, A., Rahman, R. A., Osman, A., Bakar, J., & Bimakr, M. (2010). Kinetics of crude peroxidase inactivation and color changes of thermally treated seedless guava (Psidium guajava L). Food and Bioprocess Technology. doi:10.1007/s11947-009-0245-4.

  • Garcia-Viguera, C., Zafrilla, P., Romero, F., Abellan, P., Artes, F., & Tomas-Barberan, F. A. (1999). Color stability of strawberry jam as affected by cultivar and storage temperature. Journal of Food Science, 64, 243–247.

    Article  CAS  Google Scholar 

  • Giraldo-Zuñiga, A. D., Arévalo-Pinedo, A., Rodrigues, R. M., Lima, C. S. S., & Feitosa, A. C. (2006). Kinetic drying experimental data and mathematical model for jackfruit (Artocarpus integrifolia) slices. Ciencia Tecnología Alimentaria, 5, 89–92.

    Article  Google Scholar 

  • Goksu, E. I., Sumnu, G., & Esin, A. (2005). Effect of microwave on fluidized bed drying of macaroni beads. Journal of Food Engineering, 66, 463–468.

    Article  Google Scholar 

  • Gong, Z., Zhang, M., Mujumdar, A. S., & Sun, J. (2008). Spray drying and agglomeration of instant bayberry powder. Drying Technology, 26, 116–121.

    Article  CAS  Google Scholar 

  • Gordon, M. H. (1996). Dietary antioxidants in disease prevention. Natural Product Reports, 13, 265–273.

    Article  CAS  Google Scholar 

  • Goyal, R. K., Kingsly, A. R. P., Manikantan, M. R., & Ilyas, S. M. (2006). Thin-layer drying kinetics of raw mango slices. Biosystems Engineering, 95, 43–49.

    Article  Google Scholar 

  • Guan, Y. G., Zhang, B. S., Yu, S. J., Wang, X. R., Xu, X.B., Wang, J., Han, Z., Zhang, P. J., & Lin, H. (2010). Effects of ultrasound on a glycin-glucose model system—A means of promoting Maillard reaction. Food and Bioprocess Technology. doi:10.1007/s11947-009-0251-6.

  • Halliwell, B. (1996). Antioxidants in human health and disease. Annual Review of Nutrition, 16, 33–50.

    Article  CAS  Google Scholar 

  • Halliwell, B., Murcia, M. A., Chirico, S., & Aruoma, O. I. (1995). Free radicals and antioxidants in food and in vivo: What they do and how they work? Critical Reviews in Food Science and Nutrition, 35, 7–20.

    Article  CAS  Google Scholar 

  • Hawlader, M. N. A., Perera, C. O., & Tian, M. (2006a). Comparison of the retention of 6-gingerol in drying of ginger under modified atmosphere heat pump drying and other drying methods. Drying Technology, 24, 51–56.

    Article  CAS  Google Scholar 

  • Hawlader, M. N. A., Perera, C. O., Tian, M., & Chng, K. J. (2006b). Properties of modified atmosphere heat pump dried foods. Journal of Food Engineering, 74, 392–401.

    Article  Google Scholar 

  • Hawlader, M. N. A., Perera, C. O., Tian, M., & Yeo, K. L. (2006c). Drying of guava and papaya: Impact of different drying methods. Drying Technology, 24, 77–87.

    Article  CAS  Google Scholar 

  • Hu, Q., Zhang, M., Mujumdar, A. S., Du, W., & Sun, J. (2006). Effects of different drying methods on the quality changes of granular edamame. Drying Technology, 24, 1025–1032.

    Article  Google Scholar 

  • Ibarz, A., Pagan, J., & Garza, S. (1999). Kinetic models for colour changes in pear puree during heating at relatively high temperatures. Journal of Food Engineering, 39, 415–422.

    Article  Google Scholar 

  • Ibrahim, K. E., Abu-Goukh, A. A., & Yusuf, K. S. (1994). Use of ethylene, acetylene and ether on banana fruit ripening. University of Khartoum Journal of Agricultural Sciences, 2, 73–92.

    Google Scholar 

  • Ito, A. P., Tonon, R. V., Park, K. J., & Hubinger, M. M. (2007). Influence of process conditions on the mass transfer kinetics of pulsed vacuum osmotically dehydrated mango slices. Drying Technology, 25, 1769–1777.

    Article  Google Scholar 

  • Jamradloedluk, J., Nathakaranakule, A., Soponronnarit, S., & Prachayawarakorn, S. (2007). Influences of drying medium and temperature on drying kinetics and quality attributes of durian chip. Journal of Food Engineering, 78, 198–205.

    Article  Google Scholar 

  • Jangam, S. V., Joshi, V. S., Mujumdar, A. S., & Thorat, B. N. (2008). Studies on dehydration of sapota (Achras zapota). Drying Technology, 26, 369–377.

    Article  CAS  Google Scholar 

  • Janjai, S., Lamlert, N., Intawee, P., Mahayothee, B., Boonrod, Y., Haewsungcharern, M., et al. (2009). Solar drying of peeled longan using a side loading type solar tunnel dryer: Experimental and simulated performance. Drying Technology, 27, 595–605.

    Article  Google Scholar 

  • Karabulut, O. A., & Baykal, N. (2002). Evaluation of the use of microwave power for the control of postharvest diseases of peaches. Postharvest Biology and Technology, 26, 237–240.

    Article  Google Scholar 

  • Kaya, A., Aydin, O., & Dincer, I. (2008). Experimental and numerical investigation of heat and mass transfer during drying of Hayward kiwi fruits (Actinidia deliciosa Planch). Journal of Food Engineering, 88, 323–330.

    Article  Google Scholar 

  • Khraisheh, M. A. M., McMinn, W. A. M., & Magee, T. R. A. (2004). Quality and structural changes in starchy foods during microwave and convective drying. Food Research International, 37, 497–503.

    Article  CAS  Google Scholar 

  • Kingsly, A. R. P., Meena, H. R., Jain, R. K., & Singh, D. B. (2007). Shrinkage of ber (Zizyphus mauritian L.) fruits during sun drying. Journal of Food Engineering, 79, 6–10.

    Article  Google Scholar 

  • Krokida, M. K., & Maroulis, Z. B. (1999). Effect of microwave drying on some quality properties of dehydrated products. Drying Technology, 17, 449–466.

    Article  Google Scholar 

  • Law, C. L., & Mujumdar, A. S. (2008). Dehydration of fruits and vegetables. In A. S. Mujumdar (Ed.), Guide to industrial drying (pp. 223–249). India: Three S Colors.

  • Law, C. L., Waje, S., Thorat, B. N., & Mujumdar, A. S. (2008). Innovation and recent advancement in drying operation for postharvest processes. Stewart Postharvest Review, 4, 1–23.

    Article  Google Scholar 

  • Lee, H. S., & Coates, G. A. (1999). Partition of vitamin C activity in commercial citrus products. Nahrung-Food, 43, 343–344.

    Article  CAS  Google Scholar 

  • Leong, L. P., & Shui, G. (2002). An investigation of antioxidant capacity of fruits in Singapore markets. Food Chemistry, 76, 69–75.

    Article  CAS  Google Scholar 

  • Leontowicz, H., Leontowicz, M., Drzewiecki, J., Haruenkit, R., Poovarodom, S., Park, Y. S., et al. (2006). Bioactive properties of snake fruit (Salacca edulis Reinw) and mangosteen (Garcinia mangostana) and their influence on plasma lipid profile and antioxidant activity in rats fed cholesterol. European Food Research and Technology, 223, 697–703.

    Article  CAS  Google Scholar 

  • Lestari, R., Keil, S. H., & Ebert, G. (2003). Variation in fruit quality of different salak genotypes (Salacca zalacca (Gaert.) Voss) from Indonesia. In Deutscher Tropentag—Technological and Institutional Innovations for Sustainable Rural Development, Göttingen, Germany.

  • Lim, Y. Y., Lim, T. T., & Tee, J. J. (2007). Antioxidant properties of several tropical fruits: A comparative study. Food Chemistry, 103, 1003–1008.

    Article  CAS  Google Scholar 

  • Lopez, A., Pique, M. T., Boatella, J., Romero, A., Ferran, A., & Garcia, J. (1997). Influence of drying conditions on the hazelnut quality: III. Browning. Drying Technology, 15, 989–1002.

    Article  CAS  Google Scholar 

  • Lozano, J. E., & Ibarz, A. (1997). Colour changes in concentrated fruit pulp during heating at high temperatures. Journal of Food Engineering, 31, 365–373.

    Article  Google Scholar 

  • Madamba, P. S., & Lopez, R. I. (2002). Optimization of the osmotic dehydration of mango (Mangifera indica L.) slices. Drying Technology, 20, 1227–1242.

    Article  CAS  Google Scholar 

  • Marques, L. G., Silveira, A. M., & Freire, J. T. (2006). Freeze-drying characteristics of tropical fruits. Drying Technology, 24, 457–463.

    Article  CAS  Google Scholar 

  • Marques, L. G., Ferreira, M. C., & Freire, J. T. (2007). Freeze-drying of acerola (Malpighia glabra L.). Chemical Engineering and Processing, 46, 451–457.

    Article  CAS  Google Scholar 

  • Maskan, M. (2001). Kinetics of colour change of kiwifruits during hot air and microwave drying. Journal of Food Engineering, 48, 169–175.

    Article  Google Scholar 

  • Mason, T. J. (1998). Power ultrasound in food processing—The way forward. In M. J. W. Povey & T. Mason (Eds.), Ultrasounds in food processing (pp. 104–124). Glasgow: Blackie Academic and Professional.

    Google Scholar 

  • Methakhup, S., Chiewchan, N., & Devahastin, S. (2005). Effect of drying methods and conditions on drying kinetics and quality of Indian gooseberry flake. LWT Food Science and Technology, 38, 579–587.

    Article  CAS  Google Scholar 

  • Montri, N. (1998) In vitro propagation of Phyllanthus emblica L. M.Sc thesis, Kasetsart University, Thailand.

  • Morton, J. F. (1987a). Fruits of warm climates. Miami: Morton.

    Google Scholar 

  • Morton, J. F. (1987b). Sapodilla. In J. F. Morton (Ed.), Fruits of warm climates (pp. 393–398). Miami: Creative Resources Systems.

    Google Scholar 

  • Mujumdar, A. S. (2000). Classification and selection of industrial dryers. In Devahastin (Ed.), Practical guide to industrial drying (pp. 37–71). Montreal: Exergex Corp.

    Google Scholar 

  • Mujumdar, A. S. (2001). Recent developments in the drying technologies for the production of particulate materials. In Levy & Kalman (Eds.), Handbook of powder technology, vol. 10 (pp. 533–545). New York: Elsevier.

    Google Scholar 

  • Mujumdar, A. S. (2006). Some recent developments in drying technologies appropriate for postharvest processing. International Journal of Postharvest Technology and Innovation, 1, 76–92.

    Article  Google Scholar 

  • Mujumdar, A. S. (2007a). Principles, classification and selection of dryers. In Mujumdar (Ed.), Handbook to industrial drying (3rd ed., pp. 3–32). New York: CRC.

    Google Scholar 

  • Mujumdar, A. S. (2007b). Handbook of industrial drying. New York: CRC.

    Google Scholar 

  • Mujumdar, A. S. (2007c). An overview of innovation in industrial drying: Current status and R&D needs. Transport Porous Media, 66, 3–18.

    Article  Google Scholar 

  • Mujumdar, A. S. (2008a) Classification and selection of industrial dryers. In A. S. Mujumdar (Ed.), Guide to industrial drying (pp. 23–36). India: Three S Colors.

  • Mujumdar, A. S. (2008b). Guide to industrial drying. Singapore.

  • Mujumdar, A. S., & Devahastin, S. (2000). Fundamental principles of drying. In S. Devahastin (Ed.), Mujumdar’s practical guide to industrial drying (pp. 1–22). Brossard: Exergex Corp.

    Google Scholar 

  • Mujumdar, A. S., & Menon, A. S. (1995). Drying of solids: Principles, classification, and selection of dyers. In A. S. Mujumdar (Ed.), Handbook of industrial drying (pp. 1–40). New York: Marcel Dekker.

    Google Scholar 

  • Mujumdar, A. S., & Passos, M. L. (2000). Drying: Innovative technologies and trends in research and development. In S. Mujumdar, S. Suvachittanont (Eds.), Developments in drying 2000, vol. I (pp. 235–268). Singapore.

  • Murthy, Z. V. P., & Joshi, D. (2007). Fluidized bed drying of aonla (Emblica officinalis). Drying Technology, 25, 883–889.

    Article  CAS  Google Scholar 

  • Nieto, A., Castro, M. A., & Alzamora, S. M. (2001). Kinetics of moisture transfer during air drying of blanched and/or osmotically dehydrated mango. Journal of Food Engineering, 50, 175–185.

    Article  Google Scholar 

  • Nishizawa, M., Nademoto, Y., Sastrapradja, S., Shiro, M., & Hayashi, Y. (1988). Dukunolide D, E and F: New tetranortriterpenoids from the seeds of Lansium domesticum. Phytochemistry, 27, 237–239.

    Article  CAS  Google Scholar 

  • Nishizawa, M., Emura, M., Yamada, H., Shiro, M., Chairul, H. Y., & Tokuda, H. (1989). Isolation of a new cycloartanoid triterpene from leaves of Lansium domesticum novel skin-tumor promotion inhibitors. Tetrahedron Letters, 30, 5615–5618.

    Article  CAS  Google Scholar 

  • Nordin, M. F. M., Daud, W. R. W., Talib, M. Z. M., & Hassan, O. (2008). Effect of process parameters on quality properties of microwave dried red pitaya. International Journal of Food Engineering, 4(Article 2), 1–17.

    Google Scholar 

  • O'Harea, T. J. (1995). Postharvest physiology and storage of rambutan. Postharvest Biology and Technology, 6, 189–199.

    Article  Google Scholar 

  • O'Harea, T. J., Prasada, A., & Cooke, A. W. (1994). Low temperature and controlled atmosphere storage of rambutan. Postharvest Biology and Technology, 4, 147–157.

    Article  Google Scholar 

  • Pan, Y. K., Zhao, L. J., Zhang, Y., Chen, G., & Mujumdar, A. S. (2003). Osmotic dehydration pre-treatment in drying of fruits and vegetables. Drying Technology, 21, 1104–1114.

    Article  CAS  Google Scholar 

  • Pareek, O. P. (2001). Ber. Southampton: International Centre for Underutilised Crops.

    Google Scholar 

  • Patthamakanokporn, O., Puwastien, P., Nitithamyong, A., & Sirichakwal, P. P. (2008). Changes of antioxidant activity and total phenolic compounds during storage of selected fruits. Journal of Food Composition and Analysis, 21, 241–248.

    Article  CAS  Google Scholar 

  • Piotrowski, D., Lenart, A., & Wardzynski, A. (2004). Influence of osmotic dehydration on microwave-convective drying of frozen strawberries. Journal of Food Engineering, 65, 519–525.

    Article  Google Scholar 

  • Pokorny, J. (1991). Natural antioxidants for food use. Trends in Food Science and Technology, 2, 223–226.

    Article  CAS  Google Scholar 

  • Pragati, D. S., & Dhawan, S. S. (2003). Effect of drying methods on nutritional composition of dehydrated aonla fruit (Emblica officinalis Garten) during storage. Plant Foods for Human Nutrition, 58, 1–9.

    Google Scholar 

  • Pua, C. K., Sheikh AbD Hamid, N., Rusula, G., & AbD Rahman, R. (2007). Production of drum-dried jackfruit (Artocarpus heterophyllus) powder with different concentration of soy lecithin and gum arabic. Journal of Food Engineering, 78, 630–636.

    Article  CAS  Google Scholar 

  • Queiroz, V. A. V., Berbert, P. A., Molina, M. A. B., Gravina, G. A., Queiroz, L. R., & Deliza, R. (2007). Desidratação por imersão-impregnação e secagem por convecção de goiaba. Pesquisa Agropecuária Brasileira, 42, 1479–1486.

    Article  Google Scholar 

  • Ramarathnam, N., Osawa, T., Ochi, H., & Kawakishi, S. (1995). The contribution of plant food antioxidants to human health. Trends in Food Science and Technology, 6, 75–82.

    Article  CAS  Google Scholar 

  • Reis, K. C., Azevedo, L. F., Siqueira, H. H., & Ferrua, F. Q. (2007). Avaliação físico-química de goiabas desidratadas osmoticamente em diferentes soluções. Ciência Agrotecnológica, 31, 781–785.

    Google Scholar 

  • Rhim, J. W., Nunes, R. V., Jones, V. A., & Swartzel, K. R. (1989). Kinetics of color change of grape juice generated using linearly increasing temperature. Journal of Food Science, 54, 776–777.

    Article  CAS  Google Scholar 

  • Rodrigues, S., & Fernandes, F. A. N. (2007a). Dehydration of melons in a ternary system followed by air-drying. Journal of Food Engineering, 80, 678–687.

    Article  Google Scholar 

  • Rodrigues, S., & Fernandes, F. A. N. (2007b). Image analysis of osmotically dehydrated fruits: Melons dehydration in a ternary system. European Food Research and Technology, 225, 685–691.

    Article  CAS  Google Scholar 

  • Rodrigues, S., Oliveira, F. I. P., Gallão, M. I., & Fernandes, F. A. N. (2009). Effect of immersion time in osmosis and ultrasound on papaya cell structure during dehydration. Drying Technology, 27, 220–225.

    Article  CAS  Google Scholar 

  • Román, F., Nagle, M., Leis, H., Janjai, S., Mahayothee, B., Haewsungcharoen, M., et al. (2009). Potential of roof-integrated solar collectors for preheating air at drying facilities in Northern Thailand. Renewable Energy, 34, 1661–1667.

    Article  Google Scholar 

  • Rufino, M. S., Fernandes, F. A. N., Alves, R. E., & Brito, E. S. (2009). Free radical-scavenging behaviour of some north-east Brazilian fruit in a DPPH• system. Food Chemistry, 114, 693–695.

    Article  CAS  Google Scholar 

  • Saewan, N., Sutherland, J. D., & Chantrapromma, K. (2006). Antimalarial tetranortriterpenoids from the seeds of Lansium domesticum. Phytochemistry, 67, 2288–2293.

    Article  CAS  Google Scholar 

  • Sakia, N., Mao, W., Koshima, Y., & Watanabe, M. (2005). A method for developing model food system in microwave heating studies. Journal of Food Engineering, 66, 525–531.

    Article  Google Scholar 

  • Salunkhe, D. K., Bolin, H. R., & Reddy, N. R. (1991). Storage, processing, and nutritional quality of fruits and vegetables, vol. 2. Boca Raton: CRC.

    Google Scholar 

  • Sankat, C. K., Basanta, A., & Maharaj, V. (2000). Light mediated red colour degradation of the pomerac (Syzygium malaccense) in refrigerated storage. Postharvest Biology and Technology, 18, 253–257.

    Article  Google Scholar 

  • Santos, P. H. S., & Silva, M. A. (2008). Retention of vitamin C in drying processes of fruits and vegetables—A review. Drying Technology, 26, 1421–1437.

    Article  CAS  Google Scholar 

  • Saxena, A., Bawaa, A. S., & Raju, P. S. (2008). Optimization of a multitarget preservation technique for jackfruit (Artocarpus heterophyllus L) bulbs. Journal of Food Engineering, 91, 18–28.

    Article  CAS  Google Scholar 

  • Saxena, A., Bawaa, A. S., & Raju, P. S. (2010). Effect of minimal processing on quality of jackfruit (Artocarpus heterophyllus L.) bulbs using response surface methodology. Food and Bioprocess Technology. doi:10.1007/s11947-009-0276-x.

  • Setiawan, B., Sulaeman, A., Giraud, D. W., & Driskell, J. A. (2001). Carotenoid content of selected Indonesian fruits. Journal of Food Composition and Analysis, 14, 169–176.

    Article  CAS  Google Scholar 

  • Shah, N. S., & Nath, N. (2008). Changes in qualities of minimally processed litchis: Effect of antibrowning agents, osmo-vacuum drying and moderate vacuum packaging. LWT–Food Science and Technology, 41, 660–668.

    CAS  Google Scholar 

  • Shigematsu, E., Eik, N. M., Kimura, M., & Mauro, M. A. (2005). Influência de pré-tratamentos sobre a desidratação osmótica de carambolas. Ciência e Tecnologia de Alimentos, 25, 536–545.

    Article  CAS  Google Scholar 

  • Simal, S., Benedito, J., Sánchez, E. S., & Roselló, C. (1998). Use of ultrasound to increase mass transport rate during osmotic dehydration. Journal of Food Engineering, 36, 323–336.

    Article  Google Scholar 

  • Simal, S., Femenia, A., Garau, M. C., & Rosselló, C. (2005). Use of exponential, Page’s and diffusional models to simulate the drying kinetics of kiwi fruit. Journal of Food Engineering, 66, 323–328.

    Article  Google Scholar 

  • Skrede, G. (1985). Color quality of blackcurrant syrups during storage evaluated by Hunter. Journal of Food Science, 50, 514–517.

    Article  Google Scholar 

  • Sunjka, P. S., Rennie, T. J., Beaudry, C., & Raghavan, G. S. V. (2004). Microwave-convective and microwave-vacuum drying of cranberries: A comparative study. Drying Technology, 22, 1217–1231.

    Article  Google Scholar 

  • Sunthonvit, N., Srzednicki, G., & Craske, J. (2007). Effects of drying treatments on the composition of volatile compounds in dried nectarines. Drying Technology, 25, 877–881.

    Article  CAS  Google Scholar 

  • Taher, B. J., & Farid, M. M. (2001). Cyclic microwave thawing of frozen meat: Experimental and theoretical investigation. Chemical Engineering and Processing, 40, 379–389.

    Article  CAS  Google Scholar 

  • Tarleton, E. S. (1992). The role of field-assisted techniques in solid/liquid separation. Filtration Separation, 3, 246–253.

    Article  Google Scholar 

  • Tarleton, E. S., & Wakeman, R. J. (1998). Ultrasonically assisted separation process. In Povey & Mason (Eds.), Ultrasounds in food processing (pp. 193–218). Glasgow: Blackie Academic and Professional.

    Google Scholar 

  • Thomkapanich, O., Suvarnakuta, P., & Devahastin, S. (2007). Study of intermittent low-pressure superheated steam and vacuum drying of a heat-sensitive material. Drying Technology, 25, 205–223.

    Article  CAS  Google Scholar 

  • Touré, S., & Kibangu-Nkembo, S. (2004). Comparative study of natural solar drying of cassava, banana and mango. Renewable Energy, 29, 975–990.

    Article  Google Scholar 

  • Tulasidas, T. N., Raghavan, G. S. V., & Mujumdar, A. S. (1995). Microwave drying of grapes in a single mode cavity at 2450 MHz—II: Quality and energy aspects. Drying Technology, 13, 1973–1992.

    Article  CAS  Google Scholar 

  • Varith, J., Dijkanarukkul, A. A., & Achariyaviriya, S. (2007). Combined microwave-hot air drying of peeled longan. Journal of Food Engineering, 81, 459–468.

    Article  Google Scholar 

  • Vial, C., Guilbert, S., & Cuq, J. L. (1991). Osmotic dehydration of kiwi fruits: Influence of process variables on the color and ascorbic acid content. Science des Aliments, 11, 63–84.

    CAS  Google Scholar 

  • Waliszewski, K. N., Cortes, H. D., Pardio, V. T., & Garcia, M. A. (1999). Color parameter changes in banana slices during osmotic dehydration. Drying Technology, 17, 955–960.

    Article  CAS  Google Scholar 

  • Wan, P. J., Muanda, M. W., & Covey, J. E. (1992). Ultrasonic vs nonultrasonic hydrogenation in a batch reactor. Journal of American Organics Chemical Society, 69, 876–879.

    Article  CAS  Google Scholar 

  • Wang, Y., Wig, T. D., Tang, J., & Hallberg, L. M. (2003). Sterilization of foodstuffs using radio frequency heating. Journal of Food Science, 68, 539–544.

    Article  CAS  Google Scholar 

  • Williams, D. L. (1989). Effect of ethyl oleate on moisture content of field corn during bin batch drying. Transactions of American Society of Agricultural Engineers, 5, 573–576.

    Google Scholar 

  • Witrowa-Rajchert, D., & Lewicki, P. P. (2006). Rehydration properties of dried plant tissues. International Journal of Food Science and Technology, 41, 1040–1046.

    Article  CAS  Google Scholar 

  • Xanthoupoulos, G., Oikonomou, N., & Lambrinos, G. (2007). Applicability of a single-layer drying model to predict the drying rate of whole figs. Journal of Food Engineering, 81, 553–559.

    Article  Google Scholar 

  • Xanthopoulos, G., Yanniotis, S., & Lambrinos, G. (2009). Water diffusivity and drying kinetics of air drying of figs. Drying Technology, 27, 502–512.

    Article  Google Scholar 

  • Xu, Y., Zhang, M., Mujumdar, A. S., Duan, X., & Sun, J. (2006). A two-stage vacuum freeze and convective air drying method for strawberries. Drying Technology, 24, 1019–1023.

    Article  Google Scholar 

  • Yong, C. K., Islam, M. D. R., & Mujumdar, A. S. (2006). Mechanical means of enhancing drying rates: Effect on drying kinetics and quality. Drying Technology, 24, 397–404.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Brazilian funding institutes CNPq and CAPES; Ministry of Science, Technology and Innovation, Malaysia for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung Lim Law.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandes, F.A.N., Rodrigues, S., Law, C.L. et al. Drying of Exotic Tropical Fruits: A Comprehensive Review. Food Bioprocess Technol 4, 163–185 (2011). https://doi.org/10.1007/s11947-010-0323-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-010-0323-7

Keywords

Navigation