Skip to main content
Log in

Thermal properties and kinetics of new-generation posterior bulk fill composite cured light-emitting diodes

TG, DSC, DMA

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, the thermal behavior in terms of glass transition (T g), degradation, and thermal stability of four commercial new-generation posterior bulk fill composites (Surefill SDR, Dentsply; Quixfill, Dentsply; Xtrabase, Voco; and Xtrafill, Voco) activated by light-emitting diodes (LEDs) was analyzed by thermogravimetric analysis (TG), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). The activation energies (E a) for the decomposition of the dental resins were calculated based on the Kissinger and Doyle kinetic models from the peaks of the endothermic curves obtained when the specimens were heated at four different temperatures (5, 10, 15, and 20 °C min−1) during DSC. The results show that the Xtrabase composite displayed the highest T g (120 °C at a 5 °C min−1 heating rate) and E a (157.64 kJ mol−1) values associated with thermal degradation from the main chain of the polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gatti A, Rastelli ANS, Ribeiro SJL, Messaddeq Y, Bagnato VS. Polymerization of photocurable commercial dental methacrylate-based composites. J Therm Anal Calorim. 2007;87:631–4.

    Article  CAS  Google Scholar 

  2. Moszner N, Klapdohr S. Nanotechnology for dental composites. Int J Nanotechnol. 2004;1(1/2):130–56.

    CAS  Google Scholar 

  3. Suzuki S, Leinfelder KL, Kaway K, Tsuchtani Y. Effect of particle variation on wear rates of posterior composites. Am J Dent. 1995;8:173–8.

    CAS  Google Scholar 

  4. Masouras K, Silikas N, Watt DC. Correlation of filler content and elastic properties of resin-composites. Dent Mater. 2008;24:932–9.

    Article  CAS  Google Scholar 

  5. Rueggeberg F. Contemporary issues in photocuring. Compend Contin Educ Dent Suppl. 1999;25:S4–15.

    Google Scholar 

  6. Deb S, Sehmi H. A comparative study of the properties of dental resin composites polymerized with plasma and halogen light. Dent Mater. 2003;19:517–22.

    Article  CAS  Google Scholar 

  7. Schneider LFJ, Consani S, Ogliari F, Correr AB, Sobrinho LC, Sinhoreti MAC. Effect of time and polymerization cycle on the degree of conversion of a resin composite. Oper Dent. 2006;31:489–95.

    Article  Google Scholar 

  8. Feilzer AJ, de Gee AJ, Davidson CL. Quantitative determination of stress transfer from polymerisation shrinkage of a chemical-cured composite bonded to a pre-cast composite substrate. J Dent Mater. 1990;6:167–71.

    Article  CAS  Google Scholar 

  9. Davidson CL, Feilzer AJ. Polymerization shrinkage and polymerisation shrinkage stress in polymer-based restoratives. J Dent. 1997;25:435–40.

    Article  CAS  Google Scholar 

  10. Alfonso Maffezzoli A, Terzi R. Thermal analysis of visible-light-activated dental composites. Thermochim Acta. 1995;269(270):319–35.

    Article  Google Scholar 

  11. Caroline Lumi Miyazaki CL, Medeiros IS, Matos J, Filho LER. Thermal characterization of dental composites by TG/DTG and DSC. J Therm Anal Calorim. 2010;102:361–7.

    Article  Google Scholar 

  12. Rojas SS, Frigo GJM, Bernardi MIB, Rastelli AN, Hernandes AC, Bagnato VS. Thermal and structural properties of commercial dental resins light-cured with blue emitting diodes (LEDs). J Therm Anal Calorim. 2010;99:263–8.

    Article  CAS  Google Scholar 

  13. Vaidyanathan J, Vaidyanathan TK. Computer-controlled differential scanning calorimetry of dental composites. IEEE Trans Biomed Eng. 1991;38:319–25.

    Article  CAS  Google Scholar 

  14. Miyazaki CL, Medeiros IS, Matos JR, Filho LER. Thermal characterization of dental composites by TG/DTG and DSC. J Therm Anal Calorim. 2010;102:361–7.

    Article  CAS  Google Scholar 

  15. Sampath S, Girish SR. Thermal studies on different classes of clinical dental composites. J Therm Anal Calorim. 2013;111:219–25.

    Article  CAS  Google Scholar 

  16. Bernardi MIB, Rojas SS, Andreeta MRB, Rastelli ANS, Hernandes AC, Bagnato VS. Thermal analysis and structural investigation of different dental composite resins. J Therm Anal Calorim. 2008;94(3):791–6.

    Article  CAS  Google Scholar 

  17. Emamia N, Söderholm KJM. Dynamic mechanical thermal analysis of two light-cured dental composites. Dent. Mater. 2005;21:977–83.

    Article  Google Scholar 

  18. Sideridou ID, Karabela MM, Vouvoudi EC. Dynamic thermomechanical properties and sorption characteristics of two commercial light cured dental resin composites. Dent. Mater. 2008;24:737–43.

    Article  CAS  Google Scholar 

  19. Almeida CC, Mothe CG. Characterization of dental composites by thermal analysis, infrared spectroscopy and scanning electron microscopy. J Therm Anal Calorim. 2009;97:585–9.

    Article  CAS  Google Scholar 

  20. Costa SXS, Galvão MR, Jacomassi DP, Bernardi MIB, Hernandes AC, Souza Rastelli AN, Andrade MF. Continuous and gradual photo-activation methods: influence on degree of conversion and crosslink density of composite resins. J Therm Anal Calorim. 2011;103:219–27.

    Article  CAS  Google Scholar 

  21. Imazatoa S, McCabeb JF, Tarumia H, Eharaa A, Ebisua S. Degree of conversion of composites measured by DTA and FTIR. Dent. Mater. 2001;17:178–83.

    Article  Google Scholar 

  22. Rojas SS, Frigo GJM, Bernardi MIB, de S Rastelli AN, Hernandes AC, Bagnato VS. Thermal and structural properties of commercial dental resins light-cured with blue emitting diodes (LEDs). J Therm Anal Calorim. 2010;99:263–8.

    Article  CAS  Google Scholar 

  23. Santana IL, Gonçalves LM, Ribeiro JJS, Filho JRM, Júnior AAC. Thermal behavior of direct resin composites: glass transition temperature and initial degradation analyses. Rev Odonto Cienc. 2011;26(1):50–5.

    Article  Google Scholar 

  24. Nomura Y, Teshima W, Tanaka N, Yoshida Y, Nahara Y, Okazaki M. Thermal analysis of dental resins cured with blue light-emitting diodes (LEDs). J Biomed Mater Res. 2002;63(2):209–13.

    Article  CAS  Google Scholar 

  25. Ferrante M, Petrini M, Trentini P, Ciavarelli L, Spoto G. Thermal analysis of light-curing composites. J Therm Anal Calorim. 2010;102:107–11.

    Article  CAS  Google Scholar 

  26. Wang S, Tan Z, Li Y, Li Y, Shi, Tong B. Heat capacity and thermodynamic properties of benzyl disulfide (C14H14S2). Therm. Acta. 2007;463:21–5.

    Article  CAS  Google Scholar 

  27. Doyle CD. Estimating isothermal life from thermogravimetric data. J Appl Polym Sci. 1962;6:639–42.

    Article  CAS  Google Scholar 

  28. Mendes LC, Tedesco AD, Miranda MS, Benzi MR, Chagas BS. Determination of degree of conversion as a function of depth of a photo-initiated dental restoration composite—II application to commercial SureFil (TM). Polym Testing. 2005;24:942–6.

    Article  CAS  Google Scholar 

  29. Mendes LC, Tedesco AD, Miranda MS. Determination of degree of conversion as function of depth of a photo-initiated dental restoration composite. Polym Testing. 2005;24:418–22.

    Article  CAS  Google Scholar 

  30. Sideridou I, Achilias DS, Kyrikou E. Thermal expansion characteristics of light-cured dental resins and resin composites. Biomaterials. 2004;25:3087–97.

    Article  CAS  Google Scholar 

  31. Wendt SL. The effect of heat used as a secondary cure upon the physical properties of three composite resins. I. Diametral tensile strength, compressive strength, and marginal dimensional stability. Quintessence Int. 1987;18:265–71.

    Google Scholar 

  32. Wendt SL. The effect of heat used as secondary cure upon the physical properties of three composite resins. II. Wear, hardness, and color stability. Quintessence Int. 1987;18:351–6.

    Google Scholar 

  33. Vaidyanathan J, Vaidyanathan TK, Wang Y, Viswanadhan T. Thermoanalytical characterization of visible light cure dental composites. J Oral Rehabil. 1992;19:49–64.

    Article  CAS  Google Scholar 

  34. Truffier-Boutry D, Demoustier-Champagne S, Devaux J, Biebuyck J, Mestdagh M, Larbanois P, et al. A physico-chemical explanation of the post-polymerization shrinkage in dental resins. Dent Mater. 2006;22:405–12.

    Article  CAS  Google Scholar 

  35. Lovell LG, Lu H, Elliott JE, Stansbury JW, Bowman CN. The effect of cure rate on the mechanical properties of dental resins. Dent Mater. 2001;17:504–11.

    Article  CAS  Google Scholar 

  36. von Fraunhofer JA, Sichina WJ. Characterization of the physical properties of resilient denture liners. Int J Prosthodont. 1994;7(2):120–8.

    Google Scholar 

  37. Renata V, Mesquita RV, Axmann D, Geis-Gerstorfer J. Dynamic visco-elastic properties of dental composite resins. Dent Mater. 2006;22:258–67.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Yildiz Technical University Research Foundation (Project No.: 2013-07-04-KAP04) for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aysel Kantürk Figen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kantürk Figen, A., Yilmaz Atali, P. & Pişkin, M.B. Thermal properties and kinetics of new-generation posterior bulk fill composite cured light-emitting diodes. J Therm Anal Calorim 118, 31–42 (2014). https://doi.org/10.1007/s10973-014-3975-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3975-0

Keywords

Navigation