Skip to main content

Advertisement

Log in

Temperature changes and hardness of resin-based composites light-cured with laser diode or light-emitting diode curing lights

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

The temperature and Vickers Hardness (VH) at the top and bottom surfaces of three resin-based composites (RBCs) were measured when light-cured using five light-curing units (LCUs). The spectrum, power, and energy delivered to the top of the RBCs and transmitted through the RBCs were measured. Starting at 32℃, the temperature rise produced by the Monet Laser (ML—1 s and 3 s), Valo Grand (VG—3 s and 10 s), DeepCure (DC—10 s), PowerCure, (PC—3 s and 10 s) and PinkWave (PW—10 s) were measured at the bottom of specimens 2 mm deep × 6 mm wide made of Filtek Universal A2, Tetric Evoceram A2 and an experimental RBC codenamed Transcend UB. The VH values measured at the top and bottom of these RBCs were analyzed using ANOVA and Scheffe’s post hoc test (p < 0.05) to determine the effects of the LCUs on the RBCs. The transmitted power from the ML was reduced by 77.4% through 2 mm of Filtek Universal, whereas light from PW decreased by only 36.8% through Transcend. The highest temperature increases from the LCU combined with the exothermic reaction occurred for Transcend, and overall, no significant differences were detected between Filtek Universal and Tetric Evoceram (p = 0.9756). Transcend achieved the highest VH values at the top and bottom surfaces. The PinkWave used for 10 s produced the largest temperature increase (20.2℃) in Transcend. The Monet used for 1 s produced the smallest increase (7.8℃) and the lowest bottom:top VH ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jandt KD, Mills RW. A brief history of LED photopolymerization. Dent Mater. 2013;29(6):605–17. https://doi.org/10.1016/j.dental.2013.02.003.

    Article  PubMed  Google Scholar 

  2. Ernst CP, Price RB, Callaway A, Masek A, Schwarm H, Rullmann I, et al. Visible light curing devices–irradiance and use in 302 German dental offices. J Adhes Dent. 2018;20(1):41–55. https://doi.org/10.3290/j.jad.a39881.

    Article  PubMed  Google Scholar 

  3. Rueggeberg FA, Giannini M, Arrais CAG, Price RBT. Light curing in dentistry and clinical implications: a literature review. Braz Oral Res. 2017;31(suppl 1): e61. https://doi.org/10.1590/1807-3107BOR-2017.vol31.0061.

    Article  PubMed  Google Scholar 

  4. AMD. Monet Laser Curing Light. The 1 second revolution. 2021. https://www.amdlasers.com/pages/monet-laser-curing-light-intro. Accessed 12 October 2021.

  5. CMS. FlashMax2 product description. Copenhagen: CMS Dental; 2016. http://www.cmsdental.com/?id=415&c=Function%20Curing%20lights&ulang=2. Accessed Jun 14 2018.

  6. Wahbi MA, Aalam FA, Fatiny FI, Radwan SA, Eshan IY, Al-Samadani KH. Characterization of heat emission of light-curing units. Saudi Dent J. 2012;24(2):91–8. https://doi.org/10.1016/j.sdentj.2012.01.003.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rueggeberg FA. State-of-the-art: dental photo-curing–a review. Dent Mater. 2011;27(1):39–52. https://doi.org/10.1016/j.dental.2010.10.021.

    Article  PubMed  Google Scholar 

  8. Maucoski C, Zarpellon DC, Dos Santos FA, Lipinski LC, Campagnoli EB, Rueggeberg FA, et al. Analysis of temperature increase in swine gingiva after exposure to a Polywave((R)) LED light curing unit. Dent Mater. 2017;33(11):1266–73. https://doi.org/10.1016/j.dental.2017.07.021.

    Article  PubMed  Google Scholar 

  9. Spranley TJ, Winkler M, Dagate J, Oncale D, Strother E. Curing light burns. Gen Dent. 2012;60(4):e210–4.

    PubMed  Google Scholar 

  10. Zach L, Cohen G. Pulp response to externally applied heat. Oral Surg Oral Med Oral Pathol. 1965;19(4):515–30. https://doi.org/10.1016/0030-4220(65)90015-0.

    Article  PubMed  Google Scholar 

  11. Runnacles P, Arrais CA, Pochapski MT, Dos Santos FA, Coelho U, Gomes JC, et al. In vivo temperature rise in anesthetized human pulp during exposure to a polywave LED light curing unit. Dent Mater. 2015;31(5):505–13. https://doi.org/10.1016/j.dental.2015.02.001.

    Article  PubMed  Google Scholar 

  12. Zarpellon DC, Runnacles P, Maucoski C, Gross DJ, Coelho U, Rueggeberg FA, et al. Influence of class V preparation on in vivo temperature rise in anesthetized human pulp during exposure to a Polywave((R)) LED light curing unit. Dent Mater. 2018;34(6):901–9. https://doi.org/10.1016/j.dental.2018.03.003.

    Article  PubMed  Google Scholar 

  13. Zarpellon DC, Runnacles P, Maucoski C, Coelho U, Rueggeberg FA, Arrais C. Controlling in vivo, human pulp temperature rise caused by LED curing light exposure. Oper Dent. 2019;44(3):235–41. https://doi.org/10.2341/17-364-C.

    Article  PubMed  Google Scholar 

  14. Gross DJ, Davila-Sanchez A, Runnacles P, Zarpellon DC, Kiratcz F, Campagnoli EB, et al. In vivo temperature rise and acute inflammatory response in anesthetized human pulp tissue of premolars having class V preparations after exposure to Polywave(R) LED light curing units. Dent Mater. 2020;36(9):1201–13. https://doi.org/10.1016/j.dental.2020.05.015.

    Article  PubMed  Google Scholar 

  15. Zarpellon DC, Runnacles P, Maucoski C, Gross DJ, Coelho U, Rueggeberg FA, et al. In vivo pulp temperature changes during class V cavity preparation and resin composite restoration in premolars. Oper Dent. 2021. https://doi.org/10.2341/20-098-C.

    Article  PubMed  Google Scholar 

  16. Nilsen BW, Mouhat M, Haukland T, Ortengren UT, Mercer JB. Heat development in the pulp chamber during curing process of resin-based composite using multi-wave LED light curing unit. Clin Cosmet Investig Dent. 2020;12:271–80. https://doi.org/10.2147/CCIDE.S257450.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Price RB, Ferracane JL, Shortall AC. Light-curing units: a review of what we need to know. J Dent Res. 2015;94(9):1179–86. https://doi.org/10.1177/0022034515594786.

    Article  PubMed  Google Scholar 

  18. Par M, Repusic I, Skenderovic H, Milat O, Spajic J, Tarle Z. The effects of extended curing time and radiant energy on microhardness and temperature rise of conventional and bulk-fill resin composites. Clin Oral Investig. 2019;23(10):3777–88. https://doi.org/10.1007/s00784-019-02807-1.

    Article  PubMed  Google Scholar 

  19. Wang WJ, Grymak A, Waddell JN, Choi JJE. The effect of light curing intensity on bulk-fill composite resins: heat generation and chemomechanical properties. Biomater Investig Dent. 2021;8(1):137–51. https://doi.org/10.1080/26415275.2021.1979981.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Balestrino A, Verissimo C, Tantbirojn D, Garcia-Godoy F, Soares CJ, Versluis A. Heat generated during light-curing of restorative composites: effect of curing light, exotherm, and experiment substrate. Am J Dent. 2016;29(4):234–2240.

    PubMed  Google Scholar 

  21. Akarsu S, Aktug KS. Influence of bulk-fill composites, polimerization modes, and remaining dentin thickness on intrapulpal temperature rise. Biomed Res Int. 2019;2019:4250284. https://doi.org/10.1155/2019/4250284.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mouhat M, Mercer J, Stangvaltaite L, Ortengren U. Light-curing units used in dentistry: factors associated with heat development-potential risk for patients. Clin Oral Investig. 2017;21(5):1687–96. https://doi.org/10.1007/s00784-016-1962-5.

    Article  PubMed  Google Scholar 

  23. Ilie N, Watts DC. Outcomes of ultra-fast (3 s) photo-cure in a RAFT-modified resin-composite. Dent Mater. 2020;36(4):570–9. https://doi.org/10.1016/j.dental.2020.02.007.

    Article  PubMed  Google Scholar 

  24. Garoushi S, Lassila L, Vallittu PK. Impact of fast high-intensity versus conventional light-curing protocol on selected properties of dental composites. Materials (Basel). 2021. https://doi.org/10.3390/ma14061381.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Algamaiah H, Silikas N, Watts DC. Polymerization shrinkage and shrinkage stress development in ultra-rapid photo-polymerized bulk fill resin composites. Dent Mater. 2021;37(4):559–67. https://doi.org/10.1016/j.dental.2021.02.012.

    Article  PubMed  Google Scholar 

  26. Drost T, Reimann S, Frentzen M, Meister J. Effectiveness of photopolymerization in composite resins using a novel 445-nm diode laser in comparison to LED and halogen bulb technology. Lasers Med Sci. 2019;34(4):729–36. https://doi.org/10.1007/s10103-018-2651-1.

    Article  PubMed  Google Scholar 

  27. Kouros P, Dionysopoulos D, Deligianni A, Strakas D, Sfeikos T, Tolidis K. Evaluation of photopolymerization efficacy and temperature rise of a composite resin using a blue diode laser (445 nm). Eur J Oral Sci. 2020;128(6):535–41. https://doi.org/10.1111/eos.12742.

    Article  PubMed  Google Scholar 

  28. Rocha MG, Maucoski C, Roulet JF, Price RB. Depth of cure of 10 resin-based composites light-activated using a laser diode, multi-peak, and single-peak light-emitting diode curing lights. J Dent. 2022;122:104141. https://doi.org/10.1016/j.jdent.2022.104141.

    Article  PubMed  Google Scholar 

  29. Spanovic N, Par M, Skendrovic H, Bjelovucic R, Prskalo K, Tarle Z. Real-time temperature monitoring during light-curing of experimental composites. Acta Stomatol Croat. 2018;52(2):87–96. https://doi.org/10.15644/asc52/2/1.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yang J, Algamaiah H, Watts DC. Spatio-temporal temperature fields generated coronally with bulk-fill resin composites: a thermography study. Dent Mater. 2021;37(8):1237–47. https://doi.org/10.1016/j.dental.2021.06.008.

    Article  PubMed  Google Scholar 

  31. Ivoclar Vivadent I. Bluephase® PowerCure. https://www.ivoclar.com/en_US/downloadcenter/?dc=us&lang=en#search-text=powercure&details=34342 (2019). Accessed 22 Feb 2022.

  32. Apex V. Pinkwave. https://vistaapex.com/wp-content/uploads/2021/03/91037-I-AP-ENG5.pdf. Accessed 22 Feb 2022.

  33. 3M. EliparTM DeepCure-S. https://multimedia.3m.com/mws/media/1393794O/elipar-deepcure-s-curing-light-ifu.pdf (2015). Accessed 22 Feb 2022.

  34. Ultradent Products I. Valo Grand. https://www.ultradent.com/products/categories/equipment/curing-lights/valo-grand (2017). Accessed 22 Feb 2022.

  35. Kaiser C, Price RB. Effect of time on the post-irradiation curing of six resin-based composites. Dent Mater. 2020;36(8):1019–27. https://doi.org/10.1016/j.dental.2020.04.024.

    Article  PubMed  Google Scholar 

  36. Watts DC, Kaiser C, O’Neill C, Price RB. Reporting of light irradiation conditions in 300 laboratory studies of resin-composites. Dent Mater. 2019;35(3):414–21. https://doi.org/10.1016/j.dental.2018.12.001.

    Article  PubMed  Google Scholar 

  37. Frazier K, Bedran-Russo AK, Lawson NC, Park J, Khajotia S, Urquhart O, et al. Dental light-curing units: an American dental association clinical evaluators panel survey. J Am Dent Assoc. 2020;151(7):544-545.e2. https://doi.org/10.1016/j.adaj.2020.03.001.

    Article  PubMed  Google Scholar 

  38. Par M, Marovic D, Attin T, Tarle Z, Taubock TT. Effect of rapid high-intensity light-curing on polymerization shrinkage properties of conventional and bulk-fill composites. J Dent. 2020;101: 103448. https://doi.org/10.1016/j.jdent.2020.103448.

    Article  PubMed  Google Scholar 

  39. Hori M, Fujimoto K, Hori T, Sekine H, Ueno A, Kato A, et al. Development of image analysis using python: relationship between matrix ratio of composite resin and curing temperature. Dent Mater J. 2020;39(4):648–56. https://doi.org/10.4012/dmj.2019-163.

    Article  PubMed  Google Scholar 

  40. Lempel E, Ori Z, Kincses D, Lovasz BV, Kunsagi-Mate S, Szalma J. Degree of conversion and in vitro temperature rise of pulp chamber during polymerization of flowable and sculptable conventional, bulk-fill and short-fibre reinforced resin composites. Dent Mater. 2021;37(6):983–97. https://doi.org/10.1016/j.dental.2021.02.013.

    Article  PubMed  Google Scholar 

  41. Kim MJ, Kim RJ, Ferracane J, Lee IB. Thermographic analysis of the effect of composite type, layering method, and curing light on the temperature rise of photo-cured composites in tooth cavities. Dent Mater. 2017;33(10):e373–83. https://doi.org/10.1016/j.dental.2017.07.007.

    Article  PubMed  Google Scholar 

  42. Lynch CD, Roberts JL, Al-Shehri A, Milward PJ, Sloan AJ. An ex-vivo model to determine dental pulp responses to heat and light-curing of dental restorative materials. J Dent. 2018;79:11–8. https://doi.org/10.1016/j.jdent.2018.08.014.

    Article  PubMed  Google Scholar 

  43. Lipski M, Woźniak K, Szyszka-Sommerfeld L, Borawski M, Droździk A, Nowicka A. In vitro infrared thermographic assessment of temperature change in the pulp chamber during provisionalization: effect of remaining dentin thickness. J Healthc Eng. 2020;2020:8838329. https://doi.org/10.1155/2020/8838329.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Par M, Repusic I, Skenderovic H, Sever EK, Marovic D, Tarle Z. Real-time light transmittance monitoring for determining polymerization completeness of conventional and bulk fill dental composites. Oper Dent. 2018;43(1):E19–31. https://doi.org/10.2341/17-041-L.

    Article  PubMed  Google Scholar 

  45. Anusavice KJ, Phillips RW, Shen C, Rawls HR. Phillips’ science of dental materials. In: Chapter 13. 12th ed. St. Louis: Elsevier/Saunders; 2013. p. 290.

  46. Armellin E, Bovesecchi G, Coppa P, Pasquantonio G, Cerroni L. LED curing lights and temperature changes in different tooth sites. Biomed Res Int. 2016;2016:1894672. https://doi.org/10.1155/2016/1894672.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lakhani J, Agrawal V, Mahant R, Kapoor S, Vaghamshi D, Shah A. Pulpal temperature rise: evaluation after light activation of newer pulp-capping materials and resin composite. Contemp Clin Dent. 2018;9(4):644–8. https://doi.org/10.4103/ccd.ccd_504_18.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Braga S, Oliveira L, Ribeiro M, Vilela A, da Silva GR, Price RB, et al. Effect of simulated pulpal microcirculation on temperature when light curing bulk fill composites. Oper Dent. 2019;44(3):289–301. https://doi.org/10.2341/17-351-L.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Braden Sullivan for his assistance in collecting the data and Professor D. Labrie for his input into the study design. This study was supported by Mitacs travel grant (IT26826). It was also financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brazil (CAPES) – Finance Code 001 and an internal research fund grant from the Faculty of Dentistry, Dalhousie University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiane Maucoski.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maucoski, C., Price, R.B. & Arrais, C.A.G. Temperature changes and hardness of resin-based composites light-cured with laser diode or light-emitting diode curing lights. Odontology 111, 387–400 (2023). https://doi.org/10.1007/s10266-022-00745-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-022-00745-1

Keywords

Navigation