Skip to main content
Log in

Compatibility of medroxyprogesterone acetate and pharmaceutical excipients through thermal and spectroscopy techniques

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Studies of active drug-excipient compatibility represent an important phase in the preformulation stage of the development of all dosage forms. For the development of conjugation estrogens and medroxyprogesterone acetate (MPA) double-layer tablets, techniques of thermal, isothermal stress testing (IST), and molecular vibrational spectroscopy analysis were performed to access the compatibility. Differential scanning calorimetry (DSC) studies were used as an important and complementary tool during preformulation to determine drug-excipient compatibility. On the basis of DSC results, MPA was found to be compatible with polyethylene glycol 6000. However, the results of Raman and IST studies showed that all the excipients defined in the prototype formula were found to be compatible with MPA. Overall, the compatibility of selected excipients with MPA was successfully evaluated using a combination of thermal and IST methods, and the formulations developed using the compatible excipients were found to be stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hall JA, Morton I (1999). Concise dictionary of pharmacological agents: properties and synonyms. Springer, New York, p. 173. ISBN 978-0-7514-0499-9.

  2. MedroxyPROGESTERone: Drug information provided by Lexi-Comp. Merck Manual. 2009. Retrieved 8 July 2010.

  3. Patra CN, Kumar AB, Pandit HK, Singh SP. Design and evaluation of sustained release bilayer tablets of propranolol hydrochloride. Acta Pharm. 2007;57:479–89.

    Article  CAS  Google Scholar 

  4. Uekama K, Matsubara K, Abe K, Horiuchi Y, Hirayamma F, Suzuki N. Design and in vitro evaluation of slow-release dosage form of piretanide: utility of beta-cyclodextrin: cellulose derivative combination as a modified-release drug carrier. J Pharm Sci. 1990;79:244–8.

    Article  CAS  Google Scholar 

  5. Bruni G, Berbenni V, Milanese C, Girella A, Marini A. Drug-excipient compatibility studies in binary and ternary mixtures by physicochemical techniques. J Therm Anal Calorim. 2010;102:193–210.

    Article  CAS  Google Scholar 

  6. Ganesh G, Ramadoss A, Kannan PS, SubbiahPandi A. A Crystal growth, structural, thermal, and dielectric characterization of Tutton salt (NH4)2Fe(SO4)2·6H2O crystals. J Therm Anal Calorim. 2013;112:547–54.

    Article  CAS  Google Scholar 

  7. Yan G, Li H, Zhang R, Ding D. Preparation and evaluation of a sustained-release formulation of nifedipine HPMC tablets. Drug Dev Ind Pharm. 2000;26:681–6.

    Article  CAS  Google Scholar 

  8. Fassihi RA, Ritschel WA. Multiple-layer, direct-compression, controlled-release system: in vitro and in vivo evaluation. J Pharm Sci. 1993;82:750–4.

    Article  CAS  Google Scholar 

  9. Lopes CM, Sousa Lobo JM, Pinto JF, Costa PC. Compressed matrix core tablet as a quick/slow dual-component delivery system containing ibuprofen. AAPS PharmSciTech. 2007;8:E76.

    Article  Google Scholar 

  10. Maggi L, Machiste EO, Torre ML, Conte U. Formulation of biphasic release tablets containing slightly soluble drugs. Eur J Pharm Biopharm. 1999;48:37–42.

    Article  CAS  Google Scholar 

  11. Ford JL, Timmins P, In: Rubinstein MH, editor. Pharmaceutical thermal analysis: techniques and applications. Chichester: Ellis Horwood; 1989. p. 201–237.

  12. Wang Z, Horikawa T, Hirayama F, Uekama K. Design and invitro evaluation of a modified-release oral dosage form of nifedipine by hybridization of hydroxypropyl-beta-cyclodextrin and hydroxypropylcellulose. J Pharm Pharmacol. 1993;45:942–6.

    Article  CAS  Google Scholar 

  13. Sims JL, Carreira JA, Carrier DJ, Crabtree SR, Easton L, Hancock SA, Simcox CE. A New approach to accelerated drug-excipient compatibility testing. Pharm Dev Technol. 2003;8:119–26.

    Article  CAS  Google Scholar 

  14. Clas SD, Dalton CR, Hancock BC. Differential scanning calorimetry: applications in drug development. Pharm Sci Technol. 1999;3:311–20.

    Article  Google Scholar 

  15. Giron D. Contribution of thermal methods and related techniques to the rational development of pharmaceuticals: part 2. Pharm Sci Technol. 1998;4:262–8.

    Article  Google Scholar 

  16. Singh AV. A DSC study of some biomaterials relevant to pharmaceutical industry. J Therm Anal Calorim. 2013;112:791–3.

    Article  CAS  Google Scholar 

  17. Vueba ML, Veiga F, Sousa JJ, Pina ME. Compatibility studies between ibuprofen or ketoprofen with cellulose ether polymer mixtures using thermal analysis. Drug Dev Ind Pharm. 2005;31:943–9.

    Article  CAS  Google Scholar 

  18. Mura P, Faucci MT, Manderioli A, Bramanti G, Ceccarelli L. Compatibility study between ibuproxam and pharmaceutical excipients using differential scanning calorimetry, hot-stage microscopy and scanning electron microscopy. J Pharm Biomed Anal. 1998;18:151–63.

    Article  CAS  Google Scholar 

  19. Botha SA, Lotter AP. Drug Dev Ind Pharm. 1989;15:415–26.

    Article  CAS  Google Scholar 

  20. Mura P, Manderioli A, Bramanti G, Furlanetto S, Pinzauli S. Int J Pharm. 1995;119:71–9.

    Article  CAS  Google Scholar 

  21. Bucci R, Magri AD, Magri AL. DSC in the chemical analysis of drugs. Determinations of diclofenac in pharmaceutical formations. J Therm Anal Calorim. 2000;61:369–76.

    Article  CAS  Google Scholar 

  22. FDA/CDER (2007) Dissolution method—list of all drug in data base. US Food and Administration website. Accessed 22 December 2007.

  23. Soares MFR, Soares-sobrinho JL, Silva KER, Alves LDS, Lopes PQ, Correia LP, Souza FS, Macedo RO, Rolim-Neto PJ. Thermal characterization of antimicrobial drug ornidazole and its compatibility in a solid pharmaceutical product. J Therm Anal Calorim. 2011;104:307–13.

    Article  Google Scholar 

  24. Malan CEP, Villers MM, Lotter AP. J Pharm Biomed Anal. 1997;15:549–57.

    Article  CAS  Google Scholar 

  25. Araujo AAS, Storpirtis S, Mercuri LP, Carvalho FMS, Filho MS, Matos JR. Int J Pharm. 2003;260:303–14.

    Article  CAS  Google Scholar 

  26. Pani NR, Nath LK, Acharya S, Bhuniya B. Application of DSC, IST, and FTIR study in the compatibility testing of nateglinide with different pharmaceutical excipients. J Therm Anal Calorim. 2012;108:219–26.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the National High Technology Research and Development Program of China (201291162) and the Fundamental Research Funds for the Central Universities (CXZZ12_0119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bai-Wang Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, R., Sun, BW., Lin, J. et al. Compatibility of medroxyprogesterone acetate and pharmaceutical excipients through thermal and spectroscopy techniques. J Therm Anal Calorim 117, 731–739 (2014). https://doi.org/10.1007/s10973-014-3773-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3773-8

Keywords

Navigation