Skip to main content
Log in

Thermal behavior and decomposition kinetics of efavirenz under isothermal and non-isothermal conditions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Efavirenz (EFV), a non-nucleoside reverse transcriptase inhibitor, was approved for the treatment of human immunodeficiency virus type 1 infection (HIV-1), and it is used in the high activity antiretroviral therapy in association with others drugs as the best choice of treatment in adults and children. EFV was investigated about its thermal behavior, through DSC, TG, and DTG techniques, and the kinetic parameters were evaluated by isothermal and non-isothermal conditions by Ozawa’s conventional method and by an isoconversional method proposed by Ozawa–Flynn–Wall. The decomposition process was obtained by thermogravimetric curves to determine the kinetic. EFV was melted at T peak = 411.66 K, and the decomposition started at 528.97 K. The activation energy values obtained were 93.24 and 91.58 kJ mol−1 for the non-isothermal and isothermal conditions, respectively, with the conventional method. The activation energy values obtained by isoconversional method were practically constant, hence the reaction involves a single step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. FDA. In: CDER Fast Track Products Approved Since 1998 through June 1, 2010. 2010. http://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/HowDrugsareDevelopedandApproved/DrugandBiologicApprovalReports/UCM216527.pdf. Accessed 15 Dec 2010.

  2. ANVISA. Agência Nacional de Vigilância Sanitária. In: Resolução—RE 1229 de 14 de agosto de 2001. 2001. http://www.anvisa.gov.br. Accessed 15 Dec 2010.

  3. Ribeiro JAA, Campos LMM, Alves RJ, Lages GP, Pianetti GA. Efavirenz related compounds preparation by hydrolysis procedure: setting reference standards for chromatographic purity analysis. J Pharm Biomed. 2007;43:03–298.

    Google Scholar 

  4. Sathigari S, Chadha G, Lee YP, Wright N, Parsons DL, Rangari VK, Fasina O, Babu RJ. Physicochemical characterization of efavirenz—cyclodextrin inclusion complexes. AAPS Pharm Sci Technol. 2009;10(1):81–7.

    Article  CAS  Google Scholar 

  5. Chiappetta DA, Lorenzo CA, Rico AR, Taboada P, Concheiro A, Sosnik A. N-alkylation of poloxamines modulates micellar encapsulation and release of the antiretroviral efavirenz. Eur J Pharm Biopharm. 2010;76:24–37.

    Article  CAS  Google Scholar 

  6. Cides LCS, Araújo AAS, Filho MS, Matos JR. Thermal behavior, compatibility study and decomposition kinetics of glimepiride under isothermal and non-isothermal conditions. J Therm Anal Calorim. 2006;84(2):441–5.

    Article  CAS  Google Scholar 

  7. Leite RS, Macedo RO, Torres SM, Batista CCN, Baltazar LO, Neto SAL, Souza FS. Evaluation of thermal stability and dissolution of nifedipine crystals. J Therm Anal Calorim. 2013;111:2117–23.

    Article  CAS  Google Scholar 

  8. Tiţa B, Marian E, Fuliaş A, Jurca T, Tiţa D. Thermal stability of piroxicam. Part 2. Kinetic study of the active substance under isothermal conditions. J Therm Anal Calorim. 2013;112:367–74.

    Article  Google Scholar 

  9. Perpétuo GL, Gálico DA, Fugito RA, Castro RAE, Eusébio MES, Treu-Filho O, Silva ACM, Bannach G. Thermal behavior of some antihistamines. J Therm Anal Calorim. 2013;111:2019–28.

    Article  Google Scholar 

  10. Tita B, Jurca T, Tita D. Thermal stability of pentoxifylline: active substance and tablets. Part 1. Kinetic study of the active substance under non-isothermal conditions. J Therm Anal Calorim. 2013;1–9.

  11. Yu L, Reutzel SM, Stephenson GA. Physical characterization of polymorphic drugs: an integrated characterization strategy. Pharm Sci Technol Today. 1998;3:118–27.

    Article  Google Scholar 

  12. Aquino FM, Melo DMA, Santiago RC, Melo MAF, Martinelli AE, Freitas JCO, Araújo LCB. Thermal decomposition kinetics of PrMO3 (M = Ni or Co) ceramic materials via thermogravimetry. J Therm Anal Calorim. 2011;104:701–5.

    Article  CAS  Google Scholar 

  13. Tiţa D, Fuliaş A, Tiţa B. Thermal stability of ketoprofen. Part 2. Kinetic study of the active substance under isothermal conditions. J Therm Anal Calorim. 2013;111:1979–85.

    Article  Google Scholar 

  14. Rodante F. Multi-step decomposition process for some antibiotics A kinetic study. Thermochim Acta. 2002;394:7–18.

    Article  CAS  Google Scholar 

  15. Chaves LL, Rolim LA, Gonçalves MLCM, Vieira ACC, Alves LDS, Soares MFR, Soares-Sobrinho JL, Lima MCA, Rolim-Neto PJ. Study of stability and drug-excipient compatibility of diethylcarbamazine citrate. J Therm Anal Calorim. 2013;111:2179–86.

    Article  CAS  Google Scholar 

  16. Vyazovkin S, Burnham AK, Criado JM, Maqueada-Pérez LA, Popescu C, Sbirrazzuoli N. ICTAC kinetic committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  17. Murakami FS, Bernardi LS, Pereira RN, Valente BR, Vasconcelos EC, Filho MASC, Silva MAS. Comparative behavior studies of cinnamic acid using isothermal and nonisothermal kinetic methods. Pharm Chem J. 2009;43(12):716–20.

    Article  CAS  Google Scholar 

  18. Ozawa T. Thermal analysis—review and prospect. Thermochim Acta. 2000;355:35–42.

    Article  CAS  Google Scholar 

  19. Muraleedharan K, Kannan MP, Devi TG. Thermal decomposition kinetics of potassium iodate. J Therm Anal Calorim. 2011;103:943–55.

    Article  CAS  Google Scholar 

  20. Mothé CG, Miranda IC. Study of kinetic parameters of thermal decomposition of bagasse and sugarcane straw using Friedman and Ozawa–Flynn–Wall isoconversional methods. J Therm Anal Calorim. 2013;1–9.

  21. Málek J, Koga N, Pérez-Maqueda LA, Criado JM. The Ozawa’s generalized time concept and YZ-master plots as a convenient tool for kinetic analysis of complex processes. J Therm Anal Calorim. 2013;1–10.

  22. Han Y, Li T, Saito K. A modified Ortega method to evaluate the activation energies of solid state reactions. J Therm Anal Calorim. 2013;112:683–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge CNPq for financial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Fandaruff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fandaruff, C., Araya-Sibaja, A.M., Pereira, R.N. et al. Thermal behavior and decomposition kinetics of efavirenz under isothermal and non-isothermal conditions. J Therm Anal Calorim 115, 2351–2356 (2014). https://doi.org/10.1007/s10973-013-3306-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3306-x

Keywords

Navigation