Skip to main content

Advertisement

Log in

Repositioning of anti-infective compounds against monkeypox virus core cysteine proteinase: a molecular dynamics study

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Monkeypox virus (MPXV) core cysteine proteinase (CCP) is one of the major drug targets used to examine the inhibitory action of chemical moieties. In this study, an in silico technique was applied to screen 1395 anti-infective compounds to find out the potential molecules against the MPXV-CCP. The top five hits were selected after screening and processed for exhaustive docking based on the docked score of ≤ −9.5 kcal/mol. Later, the top three hits based on the exhaustive-docking score and interaction profile were selected to perform MD simulations. The overall RMSD suggested that two compounds, SC75741 and ammonium glycyrrhizinate, showed a highly stable complex with a standard deviation of 0.18 and 0.23 nm, respectively. Later, the MM/GBSA binding free energies of complexes showed significant binding strength with ΔGTOTAL from −21.59 to −15 kcal/mol. This report reported the potential inhibitory activity of SC75741 and ammonium glycyrrhizinate against MPXV-CCP by competitively inhibiting the binding of the native substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Marennikova SS, Seluhina EM, Mal’ceva NN, Cimiskjan KL, Macevic GR. (1972) Isolation and properties of the causal agent of a new variola-like disease (monkeypox) in man. Bull World Health Organ 46:599–611

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ladnyj ID, Ziegler P, Kima E (1972) A human infection caused by monkeypox virus in Basankusu Territory, Democratic Republic of the Congo. Bull World Health Organ 46:593–597

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Heymann DL, Szczeniowski M, Esteves K (1998) Re-emergence of monkeypox in Africa: a review of the past six years. Br Med Bull 54:693–702. https://doi.org/10.1093/oxfordjournals.bmb.a011720

    Article  CAS  PubMed  Google Scholar 

  4. Bennett JE, Dolin R, Blaser MJ (2010) Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. Elsevier Health Sciences, Amsterdam

    Google Scholar 

  5. Petersen E, Kantele A, Koopmans M, Asogun D, Yinka-Ogunleye A, Ihekweazu C et al (2019) Human monkeypox: epidemiologic and clinical characteristics, diagnosis, and prevention. Infect Dis Clin 33:1027–1043. https://doi.org/10.1016/j.idc.2019.03.001

    Article  Google Scholar 

  6. Alakunle E, Moens U, Nchinda G, Okeke MI (2020) Monkeypox virus in Nigeria: infection biology, epidemiology, and evolution. Viruses 12:1257. https://doi.org/10.3390/v12111257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bunge EM, Hoet B, Chen L, Lienert F, Weidenthaler H, Baer LR et al (2022) The changing epidemiology of human monkeypox—a potential threat? A systematic review. PLoS Negl Trop Dis 16:e0010141. https://doi.org/10.1371/journal.pntd.0010141

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mpox (monkeypox) n.d. https://www.who.int/news-room/fact-sheets/detail/monkeypox (accessed 22 Aug 2023)

  9. Monkeypox: background information. GOVUK n.d. https://www.gov.uk/guidance/monkeypox (accessed 5 Sept 2022)

  10. Jezek Z, Grab B, Szczeniowski MV, Paluku KM, Mutombo M (1988) Human monkeypox: secondary attack rates. Bull World Health Organ 66:465–470

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hutson CL, Olson VA, Carroll DS, Abel JA, Hughes CM, Braden ZH et al (2009) A prairie dog animal model of systemic orthopoxvirus disease using West African and Congo Basin strains of monkeypox virus. J Gen Virol 90:323–333. https://doi.org/10.1099/vir.0.005108-0

    Article  CAS  PubMed  Google Scholar 

  12. Sah R, Abdelaal A, Reda A, Katamesh BE, Manirambona E, Abdelmonem H et al (2022) Monkeypox and its possible sexual transmission: where are we now with its evidence? Pathogens 11:924. https://doi.org/10.3390/pathogens11080924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bragazzi NL, Kong JD, Wu J (2022) Is monkeypox a new, emerging sexually transmitted disease? A rapid review of the literature. J Med Virol. https://doi.org/10.1002/jmv.28145

    Article  PubMed  Google Scholar 

  14. Research C for BE and. Key Facts About Vaccines to Prevent Monkeypox Disease. FDA 2022

  15. Fenner F (ed) (1988) Smallpox and its eradication. World Health Organization, Geneva

    Google Scholar 

  16. Fine PEM, Jezek Z, Grab B, Dixon H (1988) The transmission potential of monkeypox virus in human populations. Int J Epidemiol 17:643–650. https://doi.org/10.1093/ije/17.3.643

    Article  CAS  PubMed  Google Scholar 

  17. Commissioner O of the FDA provides update on agency response to monkeypox outbreak. FDA 2022. https://www.fda.gov/news-events/press-announcements/fda-provides-update-agency-response-monkeypox-outbreak (accessed 5 Sept 2022)

  18. Siegrist EA, Sassine J (2023) Antivirals with activity against monkeypox: a clinically oriented review. Clin Infec Dis 2022:ciac622. https://doi.org/10.1093/cid/ciac622

    Article  CAS  Google Scholar 

  19. Minasov G, Inniss NL, Shuvalova L, Anderson WF, Satchell KJF (2022) Structure of the monkeypox profilin-like protein A42R reveals potential function differences from cellular profilins. Microbiology. https://doi.org/10.1101/2022.08.07.503103

    Article  Google Scholar 

  20. Isidro J, Borges V, Pinto M, Sobral D, Santos JD, Nunes A et al (2022) Phylogenomic characterization and signs of microevolution in the 2022 multi-country outbreak of monkeypox virus. Nat Med 28:1569–1572. https://doi.org/10.1038/s41591-022-01907-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kugelman JR, Johnston SC, Mulembakani PM, Kisalu N, Lee MS, Koroleva G et al (2014) Genomic variability of monkeypox virus among humans, Democratic Republic of the Congo. Emerg Infect Dis 20:232–239. https://doi.org/10.3201/eid2002.130118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shchelkunov SN, Totmenin AV, Babkin IV, Safronov PF, Ryazankina OI, Petrov NA et al (2001) Human monkeypox and smallpox viruses: genomic comparison. FEBS Lett 509:66–70. https://doi.org/10.1016/S0014-5793(01)03144-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zheng L, Meng J, Lin M, Lv R, Cheng H, Zou L et al (2022) Structure prediction of the entire proteome of monkeypox variants. Acta Mater Med. https://doi.org/10.15212/AMM-2022-0017

    Article  Google Scholar 

  24. Hruby DE, Guarino LA, Kates JR (1979) Vaccinia virus replication. I. Requirement for the host-cell nucleus. J Virol 29:705–15. https://doi.org/10.1128/JVI.29.2.705-715.1979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Moss B, Poxvirus DNA (2013) Poxvirus DNA replication. Cold Spring Harb Perspect Biol 5:a010199. https://doi.org/10.1101/cshperspect.a010199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zephyr J, Kurt Yilmaz N, Schiffer CA (2021) Viral proteases: structure, mechanism and inhibition. Enzymes 50:301–333. https://doi.org/10.1016/bs.enz.2021.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Odhar HA (2022) Computational repurposing of FDA approved drugs against monkeypox virus cysteine proteinase: a molecular docking and dynamics simulation study. Open Sci Framew. https://doi.org/10.31219/osf.io/24w5p

    Article  Google Scholar 

  28. Dubey A, Alawi MM, Alandijany TA, Alsaady IM, Altwaim SA, Sahoo AK et al (2023) Exploration of microbially derived natural compounds against monkeypox virus as viral core cysteine proteinase inhibitors. Viruses 15:251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Siqueira-Neto JL, Debnath A, McCall L-I, Bernatchez JA, Ndao M, Reed SL et al (2018) Cysteine proteases in protozoan parasites. PLoS Negl Trop Dis 12:e0006512. https://doi.org/10.1371/journal.pntd.0006512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Naglik JR, Challacombe SJ, Hube B (2003) Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev 67:400–428. https://doi.org/10.1128/MMBR.67.3.400-428.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bryant AE (2003) Biology and pathogenesis of thrombosis and procoagulant activity in invasive infections caused by group A Streptococci and Clostridium perfringens. Clin Microbiol Rev 16:451–462. https://doi.org/10.1128/CMR.16.3.451-462.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Arasu MV, Vijayaragavan P, Purushothaman S, Rathi MA, Al-Dhabi NA, Gopalakrishnan VK et al (2023) Molecular docking of monkeypox (mpox) virus proteinase with FDA approved lead molecules. J Infect Public Health 16:784–791. https://doi.org/10.1016/j.jiph.2023.03.004

    Article  PubMed  PubMed Central  Google Scholar 

  33. Khoo YW, Li S, Chong KP (2022) In-silico primer designing and PCR for detection of monkeypox virus (MPXV). J Infect Public Health 15:1378–1380. https://doi.org/10.1016/j.jiph.2022.11.002

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chandran D, Dhama K, K MAM, Chakraborty S, Mohapatra RK, Yatoo MI, et al (2022) Monkeypox: an update on current knowledge and research advances. J Exp Biol Agric Sci 10:679–88. https://doi.org/10.18006/2022.10(4).679.688

    Article  CAS  Google Scholar 

  35. Zephyr J, Kurt Yilmaz N, Schiffer CA (2021) Chapter nine - viral proteases: structure, mechanism and inhibition. In: Cameron CE, Arnold JJ, Kaguni LS (eds) The enzymes, vol 50. Academic Press, Cambridge, pp 301–33

    Google Scholar 

  36. Alandijany TA, El-Daly MM, Tolah AM, Bajrai LH, Khateb AM, Kumar GS et al (2023) A multi-targeted computational drug discovery approach for repurposing tetracyclines against monkeypox virus. Sci Rep 13:14570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sayers EW, Bolton EE, Brister JR, Canese K, Chan J, Comeau DC et al (2021) Database resources of the national center for biotechnology information. Nucleic Acids Res 50:D20–D26. https://doi.org/10.1093/nar/gkab1112

    Article  CAS  PubMed Central  Google Scholar 

  38. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589. https://doi.org/10.1038/s41586-021-03819-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Anderson RJ, Weng Z, Campbell RK, Jiang X (2005) Main-chain conformational tendencies of amino acids. Proteins 60:679–689. https://doi.org/10.1002/prot.20530

    Article  CAS  PubMed  Google Scholar 

  40. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B et al (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25. https://doi.org/10.1016/j.softx.2015.06.001

    Article  Google Scholar 

  41. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447. https://doi.org/10.1021/ct700301q

    Article  CAS  PubMed  Google Scholar 

  42. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56. https://doi.org/10.1016/0010-4655(95)00042-E

    Article  CAS  Google Scholar 

  43. Vanommeslaeghe K, Raman EP, MacKerell AD (2012) Automation of the CHARMM general force field (CGenFF) II: assignment of bonded parameters and partial atomic charges. J Chem Inf Model 52:3155–3168. https://doi.org/10.1021/ci3003649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang H, Gao X, Fang J (2016) Multiple staggered mesh Ewald: boosting the accuracy of the smooth particle mesh Ewald method. J Chem Theory Comput 12:5596–5608. https://doi.org/10.1021/acs.jctc.6b00701

    Article  CAS  PubMed  Google Scholar 

  45. Kräutler V, van Gunsteren W, Hünenberger P (2001) A fast SHAKE: algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. J Comput Chem 22:501–508. https://doi.org/10.1002/1096-987X(20010415)22:53.0.CO;2-V

    Article  Google Scholar 

  46. Rollins ZA, Faller R, George SC (2022) Using molecular dynamics simulations to interrogate T cell receptor non-equilibrium kinetics. Comput Struct Biotechnol J 20:2124–2133. https://doi.org/10.1016/j.csbj.2022.04.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Alhomrani M, Alsanie WF, Alamri AS, Alyami H, Habeeballah H, Alkhatabi HA et al (2022) Enhancing the antipsychotic effect of risperidone by increasing its binding affinity to serotonin receptor via picric acid: a molecular dynamics simulation. Pharmaceuticals 15:285. https://doi.org/10.3390/ph15030285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Boyenle ID, Adelusi TI, Ogunlana AT, Oluwabusola RA, Ibrahim NO, Tolulope A et al (2022) Consensus scoring-based virtual screening and molecular dynamics simulation of some TNF-alpha inhibitors. Inform Med Unlocked 28:100833. https://doi.org/10.1016/j.imu.2021.100833

    Article  Google Scholar 

  49. Elkaeed EB, Yousef RG, Elkady H, Gobaara IMM, Alsfouk BA, Husein DZ et al (2022) Design, synthesis, docking, DFT, MD simulation studies of a new nicotinamide-based derivative: in vitro anticancer and VEGFR-2 inhibitory effects. Molecules 27:4606. https://doi.org/10.3390/molecules27144606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Buch I, Giorgino T, De Fabritiis G (2011) Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations. Proc Natl Acad Sci 108:10184–10189. https://doi.org/10.1073/pnas.1103547108

    Article  PubMed  PubMed Central  Google Scholar 

  51. Allen G, Benger W, Dramlitsch T, Goodale T, Hege H-C, Lanfermann G et al (2001) Cactus tools for grid applications. Clust Comput 4:179–188. https://doi.org/10.1023/A:1011491422534

    Article  Google Scholar 

  52. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open Babel: an open chemical toolbox. J Cheminform 3:33. https://doi.org/10.1186/1758-2946-3-33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tian W, Chen C, Lei X, Zhao J, Liang J (2018) CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res 46:W363-7. https://doi.org/10.1093/nar/gky473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Eberhardt J, Santos-Martins D, Tillack AF, Forli S (2021) AutoDock Vina 1.2.0: new docking methods, expanded force field, and python bindings. J Chem Inf Model 61:3891–8. https://doi.org/10.1021/acs.jcim.1c00203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Silva EF, Silva PFF, Rico T, Lemões JS (2020) Curcumin and piperin: anti-inflammatory potential revealed in molecular docking

  56. Silva PFF, Silva EF (2020) Microalgae pigment with possible anti-caries activity: in silico evidences

  57. Silva EF, Silva PFF, Rico T (2020) Anti-Sars-CoV effect of rosemary (Rosmarinus officinalis): a blind docking strategy

  58. Silva EF, Silva PFF (2020) Rosemary (Rosmarinus officinalis) against Streptococcus mutans adhesins

  59. Fährrolfes R, Bietz S, Flachsenberg F, Meyder A, Nittinger E, Otto T et al (2017) ProteinsPlus: a web portal for structure analysis of macromolecules. Nucleic Acids Res 45:W337–W343. https://doi.org/10.1093/nar/gkx333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schöning-Stierand K, Diedrich K, Fährrolfes R, Flachsenberg F, Meyder A, Nittinger E et al (2020) ProteinsPlus: interactive analysis of protein–ligand binding interfaces. Nucleic Acids Res 48:W48-53. https://doi.org/10.1093/nar/gkaa235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092. https://doi.org/10.1063/1.464397

    Article  CAS  Google Scholar 

  62. Xu Y, Gnanasekaran R, Leitner DM (2012) Analysis of water and hydrogen bond dynamics at the surface of an antifreeze protein. J At Mol Phys 2012:e125071. https://doi.org/10.1155/2012/125071

    Article  CAS  Google Scholar 

  63. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101. https://doi.org/10.1063/1.2408420

    Article  CAS  PubMed  Google Scholar 

  64. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190. https://doi.org/10.1063/1.328693

    Article  CAS  Google Scholar 

  65. Valdés-Tresanco MS, Valdés-Tresanco ME, Valiente PA, Moreno E (2021) gmx_MMPBSA: a new tool to perform end-state free energy calculations with GROMACS. J Chem Theory Comput 17:6281–6291. https://doi.org/10.1021/acs.jctc.1c00645

    Article  CAS  PubMed  Google Scholar 

  66. Miller BRI, McGee TDJr, Swails JM, Homeyer N, Gohlke H, Roitberg AE (2012) MMPBSA.py: an efficient program for end-state free energy calculations. J Chem Theory Comput 8:3314–21. https://doi.org/10.1021/ct300418h

    Article  CAS  PubMed  Google Scholar 

  67. Wang E, Weng G, Sun H, Du H, Zhu F, Chen F et al (2019) Assessing the performance of the MM/PBSA and MM/GBSA methods. 10. Impacts of enhanced sampling and variable dielectric model on protein-protein interactions. Phys Chem Chem Phys 21:18958–69. https://doi.org/10.1039/c9cp04096j

    Article  CAS  PubMed  Google Scholar 

  68. Melo F, Feytmans E (1997) Novel knowledge-based mean force potential at atomic level. J Mol Biol 267:207–222. https://doi.org/10.1006/jmbi.1996.0868

    Article  CAS  PubMed  Google Scholar 

  69. Melo F, Devos D, Depiereux E, Feytmans E (1997) ANOLEA: a www server to assess protein structures. Proc Int Conf Intell Syst Mol Biol 5:187–190

    CAS  PubMed  Google Scholar 

  70. Melo F, Feytmans E (1998) Assessing protein structures with a non-local atomic interaction energy. J Mol Biol 277:1141–1152. https://doi.org/10.1006/jmbi.1998.1665

    Article  CAS  PubMed  Google Scholar 

  71. Benkert P, Biasini M, Schwede T (2011) Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27:343–350. https://doi.org/10.1093/bioinformatics/btq662

    Article  CAS  PubMed  Google Scholar 

  72. Benkert P, Künzli M, Schwede T (2009) QMEAN server for protein model quality estimation. Nucleic Acids Res 37:W510-514. https://doi.org/10.1093/nar/gkp322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291. https://doi.org/10.1107/S0021889892009944

    Article  CAS  Google Scholar 

  74. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–W410. https://doi.org/10.1093/nar/gkm290

    Article  PubMed  PubMed Central  Google Scholar 

  75. Sippl MJ (1993) Recognition of errors in three-dimensional structures of proteins. Proteins 17:355–62. https://doi.org/10.1002/prot.340170404

    Article  CAS  PubMed  Google Scholar 

  76. Sanami S, Rafieian-Kopaei M, Dehkordi KA, Pazoki-Toroudi H, Azadegan-Dehkordi F, Mobini G-R et al (2022) In silico design of a multi-epitope vaccine against HPV16/18. BMC Bioinform 23:311. https://doi.org/10.1186/s12859-022-04784-x

    Article  CAS  Google Scholar 

  77. Taghvaei S, Saremi L (2022) Molecular dynamics simulation and essential dynamics of deleterious proline 12 alanine single-nucleotide polymorphism in PPARγ2 associated with Type 2 diabetes, cardiovascular disease, and nonalcoholic fatty liver disease. PPAR Res 2022:3833668. https://doi.org/10.1155/2022/3833668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Katari N, Rambabu G, Reddy P, Vanam A, Talatam A, Motohashi N et al (2022) Molecular docking studies of glabrene and human epidermal growth factor receptor kinase. INNOSC Theranostics Pharmacol Sci 4:38–49. https://doi.org/10.36922/itps.v4i1.56

    Article  Google Scholar 

  79. Bano S, Rasheed MA, Jamil F, Ibrahim M, Kanwal S (2019) In silico identification of novel apolipoprotein E4 Inhibitor for Alzheimer’s disease therapy. Curr Comput Aided Drug Des 15:97–103. https://doi.org/10.2174/1573409914666181008164209

    Article  CAS  PubMed  Google Scholar 

  80. Santra D, Banerjee A, Maiti S (2022) Better binding informatics of delta variants (B16172) with ACE2 than wild, D614G or N501Y CoV-2 is fully blocked by 84 amino-acid cut of wild spike. Inform Med Unlocked 29:100900. https://doi.org/10.1016/j.imu.2022.100900

    Article  Google Scholar 

  81. Santra D, Maiti S (2022) Molecular dynamic simulation suggests stronger interaction of Omicron-spike with ACE2 than wild but weaker than Delta SARS-CoV-2 can be blocked by engineered S1-RBD fraction. Struct Chem 33:1755–1769. https://doi.org/10.1007/s11224-022-02022-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tseng YY, Liang J (2006) Estimation of amino acid residue substitution rates at local spatial regions and application in protein function inference: a Bayesian Monte Carlo approach. Mol Biol Evol 23:421–436. https://doi.org/10.1093/molbev/msj048

    Article  CAS  PubMed  Google Scholar 

  83. Binkowski TA, Joachimiak A, Liang J (2005) Protein surface analysis for function annotation in high-throughput structural genomics pipeline. Protein Sci 14:2972–2981. https://doi.org/10.1110/ps.051759005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhao J, Dundas J, Kachalo S, Ouyang Z, Liang J (2011) Accuracy of functional surfaces on comparatively modeled protein structures. J Struct Funct Genom 12:97–107. https://doi.org/10.1007/s10969-011-9109-z

    Article  CAS  Google Scholar 

  85. Ionizable side chains at catalytic active sites of enzymes - PubMed n.d. https://pubmed.ncbi.nlm.nih.gov/22484856/ (accessed 17 Jan 2023)

  86. Lokhande KB, Shrivastava A, Singh A (2023) In silico discovery of potent inhibitors against monkeypox’s major structural proteins. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2023.2183342

    Article  PubMed  Google Scholar 

  87. Imran M, Abida Alotaibi NM, Thabet HK, Alruwaili JA, Eltaib L et al (2023) Repurposing anti-dengue compounds against monkeypox virus targeting core cysteine protease. Biomedicines 11:2025. https://doi.org/10.3390/biomedicines11072025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. PockDrug-Server: a new web server for predicting pocket druggability on holo and apo proteins - PubMed n.d. https://pubmed.ncbi.nlm.nih.gov/25956651/ (accessed 17 Jan 2023)

  89. Nath A, Kumer A, Khan MdW (2021) Synthesis, computational and molecular docking study of some 2,3-dihydrobenzofuran and its derivatives. J Mol Struct 1224:129225. https://doi.org/10.1016/j.molstruc.2020.129225

    Article  CAS  Google Scholar 

  90. Cosconati S, Forli S, Perryman AL, Harris R, Goodsell DS, Olson AJ (2010) Virtual screening with AutoDock: theory and practice. Expert Opin Drug Discov 5:597–607. https://doi.org/10.1517/17460441.2010.484460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nath A, Kumer A, Zaben F, Khan MdW (2021) Investigating the binding affinity, molecular dynamics, and ADMET properties of 2,3-dihydrobenzofuran derivatives as an inhibitor of fungi, bacteria, and virus protein. Beni-Suef Univ J Basic Appl Sci 10:36. https://doi.org/10.1186/s43088-021-00117-8

    Article  Google Scholar 

  92. Rahman MDM, Islam MDR, Akash S, Mim SA, Rahaman MDS, Emran TB et al (2022) In silico investigation and potential therapeutic approaches of natural products for COVID-19: computer-aided drug design perspective. Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2022.929430

    Article  PubMed  PubMed Central  Google Scholar 

  93. Haasbach E, Reiling SJ, Ehrhardt C, Droebner K, Rückle A, Hrincius ER et al (2013) The NF-kappaB inhibitor SC75741 protects mice against highly pathogenic avian influenza A virus. Antiviral Res 99:336–344. https://doi.org/10.1016/j.antiviral.2013.06.008

    Article  CAS  PubMed  Google Scholar 

  94. Ohori M, Takeuchi M, Maruki R, Nakajima H, Miyake H (2007) FR180204, a novel and selective inhibitor of extracellular signal-regulated kinase, ameliorates collagen-induced arthritis in mice. Naunyn Schmiedebergs Arch Pharmacol 374:311–316. https://doi.org/10.1007/s00210-006-0117-7

    Article  CAS  PubMed  Google Scholar 

  95. Ohtake N, Kido A, Kubota K, Tsuchiya N, Morita T, Kase Y et al (2007) A possible involvement of 3-monoglucuronyl-glycyrrhetinic acid, a metabolite of glycyrrhizin (GL), in GL-induced pseudoaldosteronism. Life Sci 80:1545–1552. https://doi.org/10.1016/j.lfs.2007.01.033

    Article  CAS  PubMed  Google Scholar 

  96. Ploeger B, Mensinga T, Sips A, Seinen W, Meulenbelt J, DeJongh J (2001) The pharmacokinetics of glycyrrhizic acid evaluated by physiologically based pharmacokinetic modeling. Drug Metab Rev 33:125–147. https://doi.org/10.1081/dmr-100104400

    Article  CAS  PubMed  Google Scholar 

  97. Liu J (1995) Pharmacology of oleanolic acid and ursolic acid. J Ethnopharmacol 49:57–68. https://doi.org/10.1016/0378-8741(95)90032-2

    Article  CAS  PubMed  Google Scholar 

  98. Herrera D (2013) Chlorhexidine mouthwash reduces plaque and gingivitis. Evid Based Dent 14:17–18. https://doi.org/10.1038/sj.ebd.6400915

    Article  PubMed  Google Scholar 

  99. Millns B, Martin MV, Field EA (1994) The sensitivity to chlorhexidine and cetyl pyridinium chloride of staphylococci on the hands of dental students and theatre staff exposed to these disinfectants. J Hosp Infect 26:99–104. https://doi.org/10.1016/0195-6701(94)90051-5

    Article  CAS  PubMed  Google Scholar 

  100. Grebely J, Dalgard O, Conway B, Cunningham EB, Bruggmann P, Hajarizadeh B et al (2018) Sofosbuvir and velpatasvir for hepatitis C virus infection in people with recent injection drug use (SIMPLIFY): an open-label, single-arm, phase 4, multicentre trial. Lancet Gastroenterol Hepatol 3:153–161. https://doi.org/10.1016/S2468-1253(17)30404-1

    Article  PubMed  Google Scholar 

  101. Computational purposing phytochemicals against cysteine protease of monkeypox virus: an in-silico approach. J Pure Appl Microbiol 2022. https://microbiologyjournal.org/computational-purposing-phytochemicals-against-cysteine-protease-of-monkeypox-virus-an-in-silico-approach/ (accessed 18 Aug 2023)

  102. Lam HYI, Guan JS, Mu Y (2022) In silico repurposed drugs against monkeypox virus. Molecules 27:5277. https://doi.org/10.3390/molecules27165277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717. https://doi.org/10.1038/srep42717

    Article  PubMed  PubMed Central  Google Scholar 

  104. Miller BR, McGee TD, Swails JM, Homeyer N, Gohlke H, Roitberg AE (2012) MMPBSA.py: an efficient program for end-state free energy calculations. J Chem Theory Comput 8:3314–21. https://doi.org/10.1021/ct300418h

    Article  CAS  PubMed  Google Scholar 

  105. Byrd CM, Bolken TC, Hruby DE (2002) The vaccinia virus I7L gene product is the core protein proteinase. J Virol 76:8973–8976. https://doi.org/10.1128/JVI.76.17.8973-8976.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study is supported via funding from Prince Sattam bin Abdulaziz University project number (PSAU/2024/R/1445).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, AAR, FSA, MG, M Alissa, MMM, AA Alshehri, AA Alsaleh, SA, AAS, AHA, BMA, NA, WAA, M Aljeldah, JHA; Data curation, AAR, FSA, MG, M Alissa, MMM; Methodology, AR, FSA, MG, M Alissa, MMM, AA Alshehri, AA Alsaleh, SA, AAS, AHA, BMA, NA, WAA, M Aljeldah, JHA; Validation, , AR, FSA, MG, M Alissa, MMM, AA Alshehri, AA Alsaleh, SA, AAS, AHA, BMA, NA, WAA, M Aljeldah, JHA; Writing—original draft, AAR and M Alissa, JHA; All authors reviewed the manuscript.

Corresponding authors

Correspondence to Ali A. Rabaan or Jeehan H. Alestad.

Ethics declarations

Competing interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8486 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabaan, A.A., Alshahrani, F.S., Garout, M. et al. Repositioning of anti-infective compounds against monkeypox virus core cysteine proteinase: a molecular dynamics study. Mol Divers (2024). https://doi.org/10.1007/s11030-023-10802-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-023-10802-8

Keywords

Navigation