Skip to main content
Log in

Properties of biodegradable poly(butylene carbonate) (PBC) composites with fumed silica nanoparticles

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Biodegradable poly(butylene carbonate)/fumed silica (PBC/SiO2) nanocomposites were prepared by melt compounding. The PBC/SiO2 nanocomposites exhibited a good dispersion of aggregates of SiO2 in the PBC matrix, and an improvement in mechanical properties. Nanoparticles affect, also, the thermal properties of PBC and especially the crystallization rate, which in all nanocomposites is faster than that of pure PBC. Due to ongoing crystallization and the crystal perfection during heating process, the melting peak of PBC shifted to higher temperature when heating from amorphous state with decreasing heating rate. With increasing cooling rate, the non-isothermal crystallization exotherms became wider and shifted to lower temperature. At a given cooling rate, the crystallization peak temperature of neat PBC was lower than that of its nanocomposite. Non-isothermal crystallization kinetic procedure, the method of Ozawa, was applied to the first deconvoluted DSC peak only by processing the data related to DSC peak. The average value of Ozawa exponent m of pure PBC is 3.04, while the one of its nanocomposite is about 2.98. Moreover, the thermal stability of the nanocomposites was increased. The T d enhancement of the nanocomposite was remarkable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Saulnier B, Ponsart S, Coudane J, Garreau H, Vert M. Lactic acid-based functionalized polymers via copolymerization and chemical modification. Macromol Biosci. 2004;4:232–7.

    Article  CAS  Google Scholar 

  2. Qiu ZB, Komura M, Ikehara T, Nishi T. Miscibility and crystallization behavior of biodegradable blends of two aliphatic polyesters. Poly(butylene succinate) and poly(ε-caprolactone). Polymer. 2003;44:7749–56.

    Article  CAS  Google Scholar 

  3. Jiang ZZ, Liu C, Gross RA. Lipase-catalyzed synthesis of aliphatic poly(carbonate-co-esters). Macromolecules. 2008;41:4671–80.

    Article  CAS  Google Scholar 

  4. Pranamuda H, Chollakup R, Tokiwa Y. Degradation of polycarbonate by a polyester-degrading strain, Amycolatopsis sp. Strain HT-6. Appl Environ Microbiol. 1999;65:4220–2.

    CAS  Google Scholar 

  5. Tokiwa Y, Calabia BP, Ugwu CU, Aiba S. Biodegradability of plastics. Int J Mol Sci. 2009;10:3722–42.

    Article  CAS  Google Scholar 

  6. Suyama T, Tokiwa Y. Enzymatic degradation of aliphatic polycarbonate, poly(tetramethylenecarbonate). Enzyme Microb Technol. 1997;20:122–6.

    Article  CAS  Google Scholar 

  7. Suyama T, Hosoya H, Tokiwa Y. Bacterial isolates degrading aliphatic polycarbonates. FEMS Microbiol Lett. 1998;161:255–61.

    Article  CAS  Google Scholar 

  8. Vassiliou A, Papageorgiou GZ, Achilias DS, Bikiaris DN. Nonisothermal crystallization kinetics of in situ prepared poly(ε-caprolactone)/surface-treated SiO2 nanocomposites. Macromol Chem Phys. 2007;21:364–76.

    Article  Google Scholar 

  9. Vassiliou A, Chrissafis K, Bikiaris DN. In situ prepared PBSu/SiO2 nanocomposites. Study of thermal degradation mechanism. Thermochim Acta. 2009;495:120–8.

    Article  CAS  Google Scholar 

  10. Qiu ZB, Miao LQ, Yang WY. Crystallization and melting behavior of biodegradable poly(butylene succinate-co-butylene carbonate). J Polym Sci Part B Polym Phys. 2006;44:1556–61.

    Article  CAS  Google Scholar 

  11. Kricheldorf HR, Mahler A. Polymers of carbonic acid. XVII. Polymerization of cyclobis(tetramethylene carbonate) by means of BuSnCl3 and Sn(II)2-ethylhexanoate. J Polym Sci Part A Polym Chem. 1996;34:2399–406.

    Article  CAS  Google Scholar 

  12. Marten E, Müller RJ, Dekwer WD. Studies on the enzymatic hydrolysis of polyesters. II. Aliphatic–aromatic copolyesters. Polym Degrad Stab. 2005;88:371–81.

    Article  CAS  Google Scholar 

  13. Tokiwa Y, Calabia BP. Biodegradability and biodegradation of polyester. J Polym Environ. 2007;15:259–67.

    Article  CAS  Google Scholar 

  14. Wu CL, Zhang MQ, Rong MZ, Friedrich K. Tensile performance improvement of low nanoparticles filled-polypropylene composites. Compos Sci Technol. 2002;62:1327–40.

    Article  CAS  Google Scholar 

  15. Bikiaris DN, Vassiliou A, Pavlidou E, Karayannidis P. Compatibilisation effect of PP-g-MA copolymer on iPP/SiO2 nanocomposites prepared by melt mixing. Eur Polym J. 2005;41:1965–78.

    Article  CAS  Google Scholar 

  16. Okazaki I, Wunderlich B. Reversible melting in polymer crystals detected by temperature modulated differential scanning calorimetry. Macromolecules. 1997;30:1758–64.

    Article  CAS  Google Scholar 

  17. Okazaki I, Wunderlich B. Reversible local melting in polymer crystals. Macromol Rapid Commun. 1997;18:313–8.

    Article  CAS  Google Scholar 

  18. Hu WB, Albrecht T, Strobl G. Reversible surface melting of PE and PEO crystallites indicated by TMDSC. Macromolecules. 1999;32:7548–54.

    Article  CAS  Google Scholar 

  19. Cheng SZD, Zhang AQ, Barley JS, Chen JH, Habenschuss A, Zschack PR. Isothermal thickening and thinning processes in low-molecular-weight poly(ethylene oxide) fractions. 1. From nonintegral-folding to integral-folding chain crystal transitions. Macromolecules. 1991;24:3937–44.

    Article  CAS  Google Scholar 

  20. Chrissafis K, Pavlidou E, Paraskevopoulos KM, Beslikas T, Nianias N, Bikiaris D. Enhancing mechanical and thermal properties of PLLA ligaments with fumed silica nanoparticles and montmorillonite. J Therm Anal Calorim. 2011;105:313–23.

    Article  CAS  Google Scholar 

  21. Wen X, Lin Y, Han CY, Zhang KY, Ran XH, Li YS, Dong LS. Thermomechanical and optical properties of biodegradable poly(l-lactide)/silica nanocomposites by melt compounding. J Appl Polym Sci. 2009;114:3379–88.

    Article  CAS  Google Scholar 

  22. Zhang J, Lou J, Ilias S, Krishnamachari P, Yan J. Thermal properties of poly(lactic acid) fumed silica nanocomposites: experiments and molecular dynamics simulations. Polymer. 2008;49:2381–6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisong Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Zhuang, Y. & Dong, L. Properties of biodegradable poly(butylene carbonate) (PBC) composites with fumed silica nanoparticles. J Therm Anal Calorim 114, 77–84 (2013). https://doi.org/10.1007/s10973-012-2862-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2862-9

Keywords

Navigation