Skip to main content
Log in

Inorganic reinforcement in PET/silica electrospun nanofibers

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

PET/silica nanocomposite fibers of high quality were fabricated from electrospinning by choosing appropriate surface modification of inorganic fillers, solution properties, and processing conditions. The existence of an immobilized layer around silane-modified silica particles in PET fibers was verified by Fourier transform infrared spectroscopy, the results of which confirm previous thermal analysis studies. The influence of silica particles on the crystal growth during isothermal crystallization as well as the phase structure of the crystallized nanocomposite fibers were examined using differential scanning calorimetry. The PET crystallization rate increases significantly with increasing silica content, which indicates that the silica nanoparticles act as an efficient nucleating agent to facilitate PET crystallization. Using Avrami analysis, for the first time, preferred 1-D crystal growth was confirmed for geometrically confined nanocomposite fibers. Addition of silica particles makes the crystal growth more likely to occur in a 1-D manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chung JW, Son SB, Chun SW, Kang TJ, Kwak SY. Thermally stable exfoliated poly(ethylene terephthalate) (PET) nanocomposites as prepared by selective removal of organic modifiers of layered silicate. Polym Degrad Stabil. 2008;93:252.

    Article  CAS  Google Scholar 

  2. Guan G, Li C, Yuan X, Xiao Y, Liu X, Zhang D. New insight into the crystallization behavior of poly(ethylene terephthalate)/clay nanocomposites. J Polym Sci Polym Phys. 2008;46:2380.

    Article  CAS  Google Scholar 

  3. Hwang SY, Lee WD, Lim JS, Park KH, Im SS. Dispersibility of clay and crystallization kinetics for in situ polymerized PET/pristine and modified montmorillonite nanocomposites. J Polym Sci Polym Phys. 2008;46:1022.

    Article  CAS  Google Scholar 

  4. Ammala A, Bell C, Dean K. Poly(ethylene terephthalate) clay nanocomposites: improved dispersion based on an aqueous ionomer. Compos Sci Technol. 2008;68:1328.

    Article  CAS  Google Scholar 

  5. Chung SC, Hahm WG, Im SS, Oh SG. Poly(ethylene terephthalate)(PET) nanocomposites filled with fumed silicas by melt compounding. Macromol Res. 2002;10:221.

    Article  CAS  Google Scholar 

  6. Xu X, Ding Y, Qian Z, Wang F, Wen B, Zhou H, Zhang S, Yang M. Degradation of poly(ethylene terephthalate)/clay nanocomposites during melt extrusion: Effect of clay catalysis and chain extension. Polym Degrad Stabil. 2009;94:113.

    Article  CAS  Google Scholar 

  7. Liu W, Tian X, Cui P, Li Y, Zhang K, Yang Y. Preparation and characterization of PET/silica nanocomposites. J Appl Polym Sci. 2004;91:1229.

    Article  CAS  Google Scholar 

  8. Bikiaris D, Karavelidis V, Karayannidis G. A new approach to prepare poly(ethylene terephthalate)/silica nanocomposites with increased molecular weight and fully adjustable branching or crosslinking by SSP. Macromol Rapid Commun. 2006;27:1199.

    Article  CAS  Google Scholar 

  9. Chen H, Liu Z, Cebe P. Chain confinement in electrospun nanofibers of PET with carbon nanotubes. Polymer. 2009;50:872.

    Article  CAS  Google Scholar 

  10. Ke Y, Long C, Qi Z. Crystallization, properties, and crystal and nanoscale morphology of PET-clay nanocomposites. J Appl Polym Sci. 1999;71:1139.

    Article  CAS  Google Scholar 

  11. Siegel J, Slepička P, Heitz J, Kolská Z, Sajdl P, Švorčík V. Gold nano-wires and nano-layers at laser-induced nano-ripples on PET. Appl Surf Sci. 2010;256:2205.

    Article  CAS  Google Scholar 

  12. Ke YC, Wu TB, Xia YF. The nucleation, crystallization and dispersion behavior of PET-monodisperse SiO2 composites. Polymer. 2007;48:3324.

    Article  CAS  Google Scholar 

  13. Antoniadis G, Paraskevopoulos KM, Bikiaris D, Chrissafis K. Non-isothermal crystallization kinetic of poly(ethylene terephthalate)/fumed silica (PET/SiO(2)) prepared by in situ polymerization. Thermochim Acta. 2010;510:103.

    Article  CAS  Google Scholar 

  14. Ma Q, Cebe P. Phase structure of electrospun poly(trimethylene terephthalate) composite nanofibers containing carbon nanotubes. J Therm Anal Calorim. 2010;102:425.

    Article  CAS  Google Scholar 

  15. Ma Q, Mao B, Cebe P. Chain confinement in electrospun nanocomposites: using thermal analysis to investigate polymer-filler interactions. Polymer. 2011;52:3190.

    Article  CAS  Google Scholar 

  16. Kim JS, Reneker DH. Polybenzimidazole nanofiber produced by electrospinning. Polym Eng Sci. 1999;39:849.

    Article  CAS  Google Scholar 

  17. Pyda M. ATHAS data bank, http://athas.prz.rzeszow.pl/, 2008.

  18. Cole KC, Ajji A, Pellerin E. New insights into the development of ordered structure in poly(ethylene terephthalate). 1. Results from external reflection infrared spectroscopy. Macromolecules. 2002;35:770.

    Article  CAS  Google Scholar 

  19. Stokr J, Schneider B, Doskocilova D, Lovy J, Sedlacek P. Conformational structure of poly(ethylene terephthalate). Infra-red, Raman and n.m.r. spectra. Polymer. 1982;23:714.

    Article  CAS  Google Scholar 

  20. Yang Y, Xu H, Gu H. Preparation and crystallization of poly(ethylene terephthalate)/SiO2 nanocomposites by in situ polymerization. J Appl Polym Sci. 2006;102:655.

    Article  CAS  Google Scholar 

  21. Wang Y, Shen C, Li H, Li Q, Chen J. Nonisothermal melt crystallization kinetics of poly(ethylene terephthalate)/clay nanocomposites. J Appl Polym Sci. 2004;91:308.

    Article  CAS  Google Scholar 

  22. He JP, Li HM, Wang XY, Gao Y. In situ preparation of poly(ethylene terephthalate)-SiO2 nanocomposites. Eur Polym J. 2006;42:1128.

    Article  CAS  Google Scholar 

  23. Hu X, Lu Q, Kaplan D, Cebe P. Microphase separation controlled beta-sheet crystallization kinetics in fibrous proteins. Macromolecules. 2009;42:2079.

    Article  CAS  Google Scholar 

  24. Xu JT, Fairclough JPA, Mai SM, Ryan AJ, Chaibundit C. Isothermal crystallization kinetics and melting behavior of poly(oxyethylene)-b-poly(oxybutylene)/poly(oxybutylene). Macromolecules. 2002;35:6937.

    Article  CAS  Google Scholar 

  25. Choi J, Kwak SY. Architectural effects of poly(epsilon-caprolactone)s on the crystallization kinetics. Macromolecules. 2004;37:3745.

    Article  CAS  Google Scholar 

  26. Avrami M. Kinetics of phase change I: general theory. J Chem Phys. 1939;7:1103.

    Article  CAS  Google Scholar 

  27. Avrami M. Kinetics of phase change. II Transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8:212.

    Article  CAS  Google Scholar 

  28. Avrami M. Granulation, phase change, and microstructure: kinetics of phase change. III. J Chem Phys. 1941;9:177.

    Article  CAS  Google Scholar 

  29. Wunderlich B. Marcromolecular physics, vol 2, crystal nucleation, growth, annealing. New York: Academic Press; 1976.

    Google Scholar 

  30. Lu XF, Hay JN. Isothermal crystallization kinetics and melting behaviour of poly(ethylene terephthalate). Polymer. 2001;42:9423.

    Article  CAS  Google Scholar 

  31. Tan S, Su A, Li W, Zhou E. New insight into melting and crystallization behavior in semicrystalline poly(ethylene terephthalate). J Polym Sci Polym Phys. 2000;38:53.

    Article  CAS  Google Scholar 

  32. Turturro G, Brown GR, St-Pierre LE. Effect of silica nucleants on the rates of crystallization of poly (ethylene terephthalate). Polymer. 1984;25:659.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Science Foundation, Polymers Program of the Division of Materials Research for support of this research under DMR-0602473 and the NSF MRI Program under DMR-0520655 which provided thermal analysis instrumentation. Portions of this research were conducted at Harvard University’s Center for Nanoscale Systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peggy Cebe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Q., Mao, B. & Cebe, P. Inorganic reinforcement in PET/silica electrospun nanofibers. J Therm Anal Calorim 109, 1245–1251 (2012). https://doi.org/10.1007/s10973-012-2582-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2582-1

Keywords

Navigation