Skip to main content
Log in

Phase structure of electrospun poly(trimethylene terephthalate) composite nanofibers containing carbon nanotubes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Nanofibrous composite mats were prepared by electrospinning of poly(trimethylene terephthalate), PTT, with multi-walled carbon nanotubes (PTT/MWCNT). Trifluoroacetic acid (TFA) and methylene chloride (MC) with volume ratio of 50/50 is a good solvent for PTT and was used as the electrospining solution. Scanning electron microscopy was used to investigate the morphology of electrospun (ES) nanofibers with 0, 0.2, 1.0, or 2.0 wt% of MWCNTs. Crystal structure of the ES mats was determined from wide angle X-ray diffraction. Thermal properties were investigated using heat capacity measurements from differential scanning calorimetry (DSC) using the three-runs method for baseline correction, heat flow amplitude calibration, and sample heat capacity determination. A model comprising three phases, a mobile amorphous fraction (MAF), rigid amorphous fraction (RAF), and crystalline fraction (C), is appropriate for ES PTT/MWCNT fibers. The phase fractions, W i (for i = RAF, MAF or C) were determined by DSC. Crystallinity decreases very slightly with the amount of MWCNT. At the same time, a large increase in RAF was observed: W RAF of PTT fiber with 2% MWCNT is twice that of neat PTT fiber. The addition of MWCNTs enhanced the PTT chain alignment and increased RAF as a result. Changes of vibrational band absorbance at 1358 and 1385 cm−1, corresponding to characteristic groups, were obtained with infrared spectroscopy. The increased absorbance at 1358 cm−1 and decreased absorbance at 1385 cm−1, with the addition of MWCNTs, strongly supports the three-phase model for ES PTT/MWCNT nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pyda M, Boller A, Grebowicz J, Chuah H, Lebedev BV, Wunderlich B. Heat capacity of poly(trimethylene terephthalate). J Polym Sci B. 1998;36:2499–511.

    Article  CAS  Google Scholar 

  2. Desborough IJ, Hall IH, Neisser JZ. The structure of poly(trimethylene terephthalate). Polymer. 1979;20:545–52.

    Google Scholar 

  3. Kim KJ, Bae JH, Kim YH. Infrared spectroscopic analysis of poly(trimethylene terephthalate). Polymer. 2001;42:1023–33.

    Article  CAS  Google Scholar 

  4. Androsch R, Wunderlich B. The link between rigid amorphous fraction and crystal perfection in cold-crystallized poly(ethylene terephthalate). Polymer. 2005;46:12556–66.

    Article  CAS  Google Scholar 

  5. Chen H, Xu H, Cebe P. Thermal and structural properties of blends of isotactic with atactic polystyrene. Polymer. 2007;48:6404–14.

    Article  CAS  Google Scholar 

  6. Lu SX, Cebe P. Effects of annealing on the disappearance and creation of constrained amorphous phase. Polymer. 1996;37:4857–63.

    Article  CAS  Google Scholar 

  7. Chen HP, Cebe P. Investigation of the rigid amorphous fraction in Nylon-6. J Therm Anal Calorim. 2007;89:417–25.

    Article  CAS  Google Scholar 

  8. Huo PP, Cebe P. Effects of thermal history on the rigid amorphous phase in poly(phenylene sulfide). Colloid Polym Sci. 1992;25:840–52.

    Google Scholar 

  9. Pak J, Pyda M, Wunderlich B. Rigid amorphous fractions and glass transitions in poly(oxy-2, 6-dimethyl-1, 4-phenylene). Macromolecules. 2003;2206:495–9.

    Article  Google Scholar 

  10. Hong PD, Chuang WT, Yeh WJ, Lin TL. Effect of rigid amorphous phase on glass transition behavior of poly(trimethylene terephthalate). Polymer. 2002;43:6879–86.

    Article  CAS  Google Scholar 

  11. Chen HP, Liu Z, Cebe P. Chain confinement in electrospun nanofibers of PET with carbon nanotubes. Polymer. 2009;50:872–80.

    Article  CAS  Google Scholar 

  12. Ajayan PM, Schadler LS, Braun PV. Nanocomposite science and technology. New York: Wiley-VCH; 2003.

    Book  Google Scholar 

  13. Gupta P, Wilkes GL. Some investigations on the fiber formation by utilizing a side-by-side bicomponent electrospinning approach. Polymer. 2003;44:6353–9.

    Article  CAS  Google Scholar 

  14. Khil MS, Kim HY, Kim MS, Park SY, Lee DR. Nanofibrous mats of poly(trimethylene terephthalate) via electrospinning. Polymer. 2004;45:295–301.

    Article  CAS  Google Scholar 

  15. Kalakkunnath S, Laola DS. Dynamic mechanical and dielectric relaxation characteristics of poly(trimethylene terephthalate). Polymer. 2006;47:7085–94.

    Article  CAS  Google Scholar 

  16. Prilutsky S, Zussman E, Cohen Y. The effect of embedded carbon nanotubes on the morphological evolution during the carbonization of poly(acrylonitrile) nanofibers. Nanotechnology. 2008;19:165603.

    Article  Google Scholar 

  17. Srimoaon P, Dangseeyun N, Supaphol P. Multiple melting behavior in isothermally crystallized poly(trimethylene terephthalate). Eur Polym J. 2004;40:599–608.

    Article  CAS  Google Scholar 

  18. Hohne GWH. Fundamentals of differential scanning calorimetry and differential thermal analysis. In: Mathot VBF, editor. Calorimetry and thermal analysis of polymers. Munich: Hanser Publishers; 1994. p. 82–5.

    Google Scholar 

  19. Pyda M, Wunderlich B. Reversible and irreversible heat capacity of poly(trimethylene terephthalate) analyzed by temperature-modulated differential scanning calorimetry. J Polym Sci B. 2008;38:501–651.

    Google Scholar 

  20. Pyda M, editor. ATHAS data bank. http://athas.prz.edu.pl (1997).

  21. Sandler J, Broza G, Nolte M, Schulte K, Lam YM, Shaffer MS. Crystallization of carbon nanotube and nanofiber polypropylene composites. J Macromol Sci B. 2003;42:479–88.

    Article  Google Scholar 

  22. Jose MV, Sternert BW, Thomas V, Dean DR, Abdalla MA, Price G, Janowski GM. Morphology and mechanical properties of Nylon 6/MWNT nanofibers. Polymer. 2007;48:1096–104.

    Article  CAS  Google Scholar 

  23. Ahn BW, Chi YS, Kang TJ. Preparation and characterization of multi-walled carbon nanotube/poly(ethylene terephthalate) nanoweb. J Appl Polym Sci. 2008;110:4055–63.

    Article  CAS  Google Scholar 

  24. Ahn BW, Chi YS, Kang TJ. Preparation and characterization of multi-walled carbon nanotube/poly(ethylene terephthalate) nanoweb. J App Polym Sci. 2008;110:4055–63.

    Article  CAS  Google Scholar 

  25. Coleman JN, Khan U, Blau WJ, Gun’ko YK. Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon. 2006;44:1624–52.

    Article  CAS  Google Scholar 

  26. McCarthy B, Coleman JN, Czerw R, Dalton AB, Maiti A, et al. A microscopic and spectroscopic study of interactions between carbon nanotubes and a conjugated polymer. J Phys Chem B. 2002;106(9):2210–6.

    Article  CAS  Google Scholar 

  27. Coleman JN, Ferreira MS. Geometric constraints in the growth of nanotube-templated polymer monolayers. Appl Phys Lett. 2004;84(5):798–800.

    Article  CAS  Google Scholar 

  28. Bokobza L. Multiwall carbon nanotube elastomeric composites: a review. Polymer. 2007;48:4907–20.

    Article  CAS  Google Scholar 

  29. Sargsyan A, Tonoyan A, Davtyan S, Schick C. The amount of immobilized polymer in PMMA SiO2 nanocomposites determined from calorimetric data. Eur Polym J. 2007;43:3113–27.

    Article  CAS  Google Scholar 

  30. McCullen SD, Stevens DR, Roberts WA, Ojha SS, Clarke LI, Gorga RE. Morphological, electrical, and mechanical characterization of electrospun nanofiber mats containing multiwalled carbon nanotubes. Macromolecules. 2007;40:997–1003.

    Article  CAS  Google Scholar 

  31. Xu H, Cebe P. Transitions from solid to liquid in isotactic polystyrene studied by thermal analysis and X-ray scattering. Polymer. 2005;46:8734–44.

    CAS  Google Scholar 

  32. Xu H, Cebe P. Heat capacity study of isotactic polystyrene: Dual reversible crystal melting and relaxation of rigid amorphous fraction. Macromolecules. 2004;37:2797–806.

    Article  CAS  Google Scholar 

  33. Liu T, Petermann J. Multiple melting behavior in isothermally cold-crystallized isotactic polystyrene. Polymer. 2001;42:6453–61.

    Article  CAS  Google Scholar 

  34. Pak J, Pyda M, Wunderlich B. Rigid amorphous fractions and glass transitions in poly(oxy-2,6-dimethyl-1,4-phenylene). Macromolecules. 2003;36:495–9.

    Article  CAS  Google Scholar 

  35. Supaphol P. Crystallization and melting behavior in syndiotactic polypropylene: origin of multiple melting phenomenon. J Appl Polym Sci. 2001;82:1083–97.

    Article  CAS  Google Scholar 

  36. Minakov AA, Mordvintsev DA, Tol R, Schick C. Melting and reorganization of the crystalline fraction and relaxation of the rigid amorphous fraction of isotactic polystyrene on fast heating (30,000 K/min). ThermochimActa. 2006;42:25–30.

    Article  Google Scholar 

  37. Minakov AA, Mordvintsev DA, Schick C. Melting and reorganization of poly(ethylene terephthalate) on fast heating (1000 K/s). Polymer. 2004;45:3755–63.

    Article  CAS  Google Scholar 

  38. Huo PT, Cebe P. Temperature-dependent relaxation of the crystal-amorphous interphase in poly(ether ether ketone). Macromolecules. 1992;25:902–9.

    Article  CAS  Google Scholar 

  39. Lee HS, Park SC, Kim YH. Structural changes of poly(trimethylene terephthalate) film upon uniaxial and biaxial drawing. Macromolecules. 2000;33:7994–8001.

    Article  CAS  Google Scholar 

  40. Chuah HH. Orientation and structure development in poly(trimethylene terephthalate) tensile drawing. Macromolecules. 2001;34:6985–93.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding was provided by the National Science Foundation, Polymers Program of the Division of Materials Research through DMR-0602473 and thermal analysis instrumentation was obtained through the MRI Program under DMR-0520655.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peggy Cebe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Q., Cebe, P. Phase structure of electrospun poly(trimethylene terephthalate) composite nanofibers containing carbon nanotubes. J Therm Anal Calorim 102, 425–434 (2010). https://doi.org/10.1007/s10973-010-0977-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0977-4

Keywords

Navigation