Skip to main content
Log in

Thermally stimulated dielectric properties of polyvinylidenefluoride–zinc oxide nanocomposites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thirty-micrometer thick polyvinylidenefluoride (PVDF)–zinc oxide (ZnO) nanocomposite samples in the mass ratio of ZnO (1–6% (w/w)) have been prepared by solution mixing method. The nano- and microstructures of PVDF–ZnO nanocomposite of different mass ratios were characterized by using high-resolution techniques such as atomic force microscopy (AFM) and scanning electron microscopy (SEM). The SEM and AFM images show the presence of different components such as nanoparticles, amorphous and crystalline phases in nanocomposite samples. Dielectric properties of polymer nanocomposite based on PVDF and ZnO of different mass/% compositions have been studied to understand the molecular motion at different frequencies in the temperature range from 300 to 500 K. The permittivity of the nanocomposites decreases with frequency, while increases with the increasing temperature and ZnO content. The loss peak that disappeared at higher frequency is the remarkable result of this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hyungoo L, Rodrigo C, Ke W, Hong L. Nano-scale characterization of a piezoelectric polymer, (polyvinylidenedifluoride, PVDF). Sensors. 2008;8:7359–68.

    Article  Google Scholar 

  2. Sarid D. Scanning force microscopy with applications to electric, magnetic, and atomic forces. New York: Oxford University Press; 1991.

    Google Scholar 

  3. Matei A, Cernica I, Cadar O, Roman C, Schiopu V. Synthesis and characterization of ZnO–polymer nanocomposites. Int J Mater Forming. 2008;1:767–70.

    Article  Google Scholar 

  4. Magonov SN. Atomic force microscopy in analysis of polymers. In: Myers RA, editor. Encyclopedia of analytical chemistry. Chichester: Wiley; 2000. p. 7432–91.

    Google Scholar 

  5. Basire C, Ivanov DA. Evolution of the lamellar structure during crystallization of a semi crystalline-amorphous polymer blend: time-resolved hot-stage SPM study. Phys Rev Lett. 2000;85:5587–90.

    Article  CAS  Google Scholar 

  6. Lewis TJ. Interfaces are the dominant feature of dielectrics at the nanometric level. IEEE Trans Dielectr Electr Insul. 2004;11:739–53.

    Article  CAS  Google Scholar 

  7. Sun Y, Zhang Z, Wong CP. Influence of interphase and moisture on the dielectric spectroscopy of epoxy/silica composites. Polymer. 2005;46:2297–305.

    Article  CAS  Google Scholar 

  8. Tanaka T, Kozaka M, Fuse N, Ohki Y. Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE Trans Dielectr Electr Insul. 2005;12:669–81.

    Article  CAS  Google Scholar 

  9. Tuncer E, Rondinone AJ, Woodward J, Sauers I, James DR, Ellis AR. Cobalt iron-oxide nanoparticle modified poly(methyl methacrylate) nanodielectrics. Appl Phys A. 2009;94:843–52.

    Article  CAS  Google Scholar 

  10. Kwonwoo S, Sang Yoon Y, Chanwoo Y, Hayoung J, Chan Eon P. Effects of polar functional groups and roughness topography of polymer gate dielectric layers on pentacene field-effect transistors. Org Electron. 2007;8:336–42.

    Article  Google Scholar 

  11. Pascu M, Duraccio D, Cimmino S, Vasile C. Modification of PVDF properties by dielectric barrier discharge treatment. e-Polymers. 2010;16:1–12.

    Google Scholar 

  12. Gaur MS, Rathore BS, Singh PK, Indolia A, Awasthi AM, Bhardwaj S. Thermally stimulated current and differential scanning calorimetry spectroscopy for the study of polymer nanocomposites. J Therm Anal Calorim. 2010;101:315–21.

    Article  CAS  Google Scholar 

  13. Shukla P, Gaur MS. Short circuit depolarization current study in polyvinyledenefluoride-polymethylmethacrylate double layered samples. Polym Plast Technol Eng. 2009;48:1–5.

    Article  Google Scholar 

  14. Bhimasankaram T, Suryanarayana SV, Prasad G. Piezoelectric polymer composite materials. Curr Sci. 1998;74:967–76.

    CAS  Google Scholar 

  15. Raju GG. Dielectrics in electric field. New York: Marcel Dekker Inc.; 2003.

    Book  Google Scholar 

  16. Nakamura K, Wada Y. Piezoelectricity, pyro-electricity and the electrostriction constant of poly vinylidene fluoride. J Polym Sci A2. 1971;9:161–73.

    Article  CAS  Google Scholar 

  17. Bunget I, Popescu M. Physics of solid dielectrics, vol. 19. Amsterdam: Elsevier; 1984.

    Google Scholar 

  18. Nada AMA, Dawy M, Salama AH. Dielectric properties and Ac-conductivity of cellulose polyethylene glycol blends. Mater Chem Phys. 2004;84:205–15.

    Article  CAS  Google Scholar 

  19. Kremer F, Schonhals A, Luck W. Broadband dielectric spectroscopy. Berlin: Springer-Verlag; 2002.

    Google Scholar 

  20. Smith GD, Bedrov D. Relationship between α and β relaxation process in amorphous polymer: insight from atomistic molecular dynamics simulations of 1,4-polybutadiene melts and blends. J Polym Sci B. 2006;45(6):627–43.

    Google Scholar 

  21. Mansour SF. Frequency and composition dependence on the dielectric properties for Mg-Zn ferrite. Egypt J Solids. 2005;28(2):263.

    Google Scholar 

  22. Popielarz R, Chiang CK, Nozaki R, Obrzut J. Dielectric properties of polymer/ferroelectric ceramic composites from 100 Hz to 10 GHz. Macromolecules. 2001;34:5910–5.

    Article  CAS  Google Scholar 

  23. Rao BP, Rao KH, Trinadha K, Caltunb OF. Dielectric behaviour of niobium doped Ni-Zn ferrites. J Optoelectron Adv Mater. 2004;6(3):951–4.

    CAS  Google Scholar 

  24. Beam WR. Electronics of solids. New York: McGraw Hill; 1965.

    Google Scholar 

  25. Veronica L, Heiko H, Christoph S, Michael W. Specific heat and dielectric relaxations in ultra-thin polystyrene layers. Thermochim Acta. 2005;432(2):222–8.

    Article  Google Scholar 

  26. Rao Narasimha VVR, Rao SB, Reddy NV. Dielectric properties of polyacrylamide polymer films. Nuovo Cimento D. 1992;14(3):253–60.

    Article  Google Scholar 

  27. Singh R, Kumar J, Singh RK, Kaur A, Sinha RDP, Gupta NP. Low frequency ac conduction and dielectric relaxation behavior of solution grown and uniaxially stretched poly (vinylidene fluoride) films. Polymer. 2006;47:5919–28.

    Article  CAS  Google Scholar 

  28. Chiang CK, Popielarz R. Polymer composites with high dielectric constant. Ferroelectrics. 2002;275:1–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research study was supported by a grant from Defence Research & Development Organization (Vide letter no. ERIP/ER/0804419/M/01/1113), New Delhi (India). We are thankful to Director, AIF-JNU and IIT Roorkee (India) for providing SEM and AFM characterization facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mulayam Singh Gaur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaur, M.S., Indolia, A.P. Thermally stimulated dielectric properties of polyvinylidenefluoride–zinc oxide nanocomposites. J Therm Anal Calorim 103, 977–985 (2011). https://doi.org/10.1007/s10973-010-1190-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1190-1

Keywords

Navigation