Skip to main content
Log in

Morphology control of mesoporous silica-carbon nanocomposites via phase separation of poly(furfuryl alcohol) and silica in the sol–gel synthesis

  • Original Paper: Fundamentals of sol-gel and hybrid materials processing
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Due to the different rates of silica alkoxide hydrolysis and furfuryl alcohol polymerization, hydrophobic poly(furfuryl alcohol) network became incompatible with hydrophilic silica network, PFA-rich spheres were formed in the sol–gel process. The presence of the amphiphilic triblock copolymers P123 could help reduce the degree of phase separation. Slower drying rate, higher aging temperature, and higher C/SiO2 ratio accelerated the polymerization of FA and tend to aggregate more PFA spherical domains. However, in the sample with a fast increased viscosity, the temperature effect would be small since the PFA is hard to agglomerate, leading a homogenous mesoporous structure. If the C/SiO2 ratio is quite high to get a more hydrophobic system, there will be no phase separation too. The understanding of the phase separation of poly-furfuryl alcohol-silica systems offers great opportunities in controlling of the mesoporous carbon-silica nanocomposites.

Graphical Abstract

Schematic diagrams of the formation of PFA/silica hybrids: during the sol–gel process, once an alkoxide molecule is hydrolyzed, the resulting hydroxy groups make the molecule more polar, which are more hydrophilic. At the same time, FA polymerized to form PFA oligomers, which are hydrophobic. The incompatibility between these two precursors could be reduced by the amphiphilic triblock copolymers P123, because the long PEO chains are hydrophilic while the PPO block is hydrophobic. Either homogenous or phase separated PFA/silica/P123 can be obtained by tailoring the chemical ratio and the sol–gel process parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yao H, Gao M, Yu S (2010) Small organic molecule templating synthesis of organic-inorganic hybrid materials: their nanostructures and properties. Nanoscale 2:323–334

    Article  Google Scholar 

  2. Karatas S, Hosgor Z, Apohan N, Gungor A (2010) Preparation and characterization of photopolymerizable organic-inorganic hybrid materials by the sol-gel method. J Polym Res 17:247–254

    Article  Google Scholar 

  3. Spange S, Grund S (2009) Nanostructured organic-inorganic composite materials by twin polymerization of hybrid monomers. Adv Mater 21:2111–2116

    Article  Google Scholar 

  4. Luo Y (2008) Coordination-induced formation of nanobelts of organic-inorganic hybrid materials at room temperature. Mater Lett 62:3549–3551

    Article  Google Scholar 

  5. Ma M, Sun Z, Zhu Y, Zhang G, Sun T, Li W, Luo H (2014) Two novel oxovanadium-organophosphonate hybrids with a 3D supramolecular structure: synthesis, crystal structures, surface photovoltage and luminescent properties. RSC Adv 4:46595–46601

    Article  Google Scholar 

  6. Duering J, Hoelzer A, Kolb U, Branscheid R, Groehn F (2013) Supramolecular organic-inorganic hybrid assemblies with tunable particle size: Interplay of three noncovalent interactions. Angew Chem Int Ed 52:8742–8745

    Article  Google Scholar 

  7. Pal N, Bhaumik A (2013) Soft templating strategies for the synthesis of mesoporous materials: Inorganic, organic-inorganic hybrid and purely organic solids. Adv Colloid Interface Sci 189:21–41

    Article  Google Scholar 

  8. Fuentes-Alventosa JM, Introzzi L, Santo N, Cerri G, Brundu A, Farris S (2013) Self-assembled nanostructured biohybrid coatings by an integrated ‘sol-gel/intercalation’ approach. RSC Adv 3:25086–25096

    Article  Google Scholar 

  9. Suriyanon N, Punyapalakul P, Ngamcharussrivichai C (2015) Synthesis of periodic mesoporous organosilicas functionalized with different amine-organoalkoxysilanes via direct co-condensation. Mater Chem Phys 149:701–712

    Article  Google Scholar 

  10. Falcao AN, Carrapico M, Sousa JS, Margaca F, Ferreira LM, Carvalho FG, Salvado I, Teixeira J (2003) Investigation of organic-inorganic hybrid materials prepared by irradiation. J Sol-Gel Sci Techn 26:349–352

    Article  Google Scholar 

  11. Wang D, Liu W, Feng Q, Dong C, Liu Q, Duan L, Huang J, Zhu W, Li Z, Xiong J, Liang Y, Chen J, Sun R, Bian L, Wang D (2017) Effect of inorganic/organic ratio and chemical coupling on the performance of porous silica/chitosan hybrid scaffolds. Mat Sci Eng C-Mater 70:969–975

    Article  Google Scholar 

  12. Rashti A, Yahyaei H, Firoozi S, Ramezani S, Rahiminejad A, Karimi R, Farzaneh K, Mohseni M, Ghanbari H (2016) Development of novel biocompatible hybrid nanocomposites based on polyurethane-silica prepared by sol gel process. Mat Sci Eng C-Mater 69:1248–1255

    Article  Google Scholar 

  13. Petcu C, Purcar V, Ianchis R, Spataru C, Ghiurea M, Nicolae CA, Stroescu H, Atanase L, Frone AN, Trica B, Donescu D (2016) Synthesis and characterization of polymer-silica hybrid latexes and sol-gel-derived films. Appl Surf Sci 389:666–672

    Article  Google Scholar 

  14. Aleshin AN, Krylov PS, Berestennikov AS, Shcherbakov IP, Petrov VN, Kondratiev VV, Eliseeva SN (2016) The redox nature of the resistive switching in nanocomposite thin films based on graphene (graphene oxide) nanoparticles and poly (9-vinylcarbazole). Synth Met 217:7–13

    Article  Google Scholar 

  15. Gao D, Liang Z, Lyu B, Ma J (2016) Organic/Inorganic nanocomposites prepared by miniemulsion polymerization. Prog Chem 28:1076–1083

    Google Scholar 

  16. Kumar KS, Sanyadanam S, Paik P (2016) Dangling ultrafine nano silica on graphene oxide to form hybrid nanocomposite: enhancement of dielectric properties. Mater Res Express 3:055019

    Article  Google Scholar 

  17. Besnard R, Arrachart G, Cambedouzou J, Pellet-Rostaing S (2016) Tuning the nanostructure of highly functionalized silica using amphiphilic organosilanes: curvature agent effects. Langmuir 32:4624–4634

    Article  Google Scholar 

  18. Catauro M, Mozzati MC, Bollino F (2015) Sol-gel hybrid materials for aerospace applications: chemical characterization and comparative investigation of the magnetic properties. Acta Astronaut 117:153–162

    Article  Google Scholar 

  19. Basturk E, Oktay B, Kahraman MV (2015) Dual-crosslinked thiol-ene/sol gel hybrid electrospun nanowires: preparation and characterization. J Polym Res 22:133

  20. Kiasat AR, Nazari S, Davarpanah J (2014) Facile synthesis of an organic-inorganic nanocomposite, PEG-silica, by sol-gel method; its characterization and application as an efficient catalyst in regioselective nucleophilic ring opening of epoxides: preparation of beta-azido alcohols and beta-cyanohydrins. C R Chim 17:124–130

    Article  Google Scholar 

  21. Tsuru K, Shirosaki Y, Hayakawa S, Osaka A (2013) Sol-Gel-derived silicate nano-hybrids for biomedical applications. Biol Pharm Bull 36:1683–1687

    Article  Google Scholar 

  22. Turrin CO, Maraval V, Caminade AM, Majoral JP, Mehdi A, Reye C (2000) Organic-inorganic hybrid materials incorporating phosphorus-containing dendrimers. Chem Mater 12:3848–3856

    Article  Google Scholar 

  23. de Ferri L, Lorenzi A, Lottici PP (2016) OctTES/TEOS system for hybrid coatings: real-time monitoring of the hydrolysis and condensation by Raman spectroscopy. J Raman Spectrosc 47:699–705

    Article  Google Scholar 

  24. Haryadi H, Sugianto D, Ristopan E (2015) Development of Composite Membranes of PVA-TEOS doped KOH for Alkaline Membrane Fuel Cell. In: Hadiyanto, Nur H, Budiman A, Iskandar F, Ismadji S (eds) AIP Conference Proceedings

  25. Almeida JC, Castro AGB, Lancastre JJH, Miranda Salvado IM, Margaca FMA, Fernandes MHV, Ferreira LM, Casimiro MH (2014) Structural characterization of PDMS-TEOS-CaO-TiO2 hybrid materials obtained by sol-gel. Mater Chem Phys 143:557–563

    Article  Google Scholar 

  26. Khovanets G, Medvedevskikh Y, Sezonenko T, Musiy R, Zakordonskiy V (2014) The Polymer-Silica Nanocomposites of the System HEMA - TEOS. 2014 IEEE International Conference on Oxide Materials for Electronic Engineering: 98-99

  27. Shilova OA (2013) Synthesis and structure features of composite silicate and hybrid TEOS-derived thin films doped by inorganic and organic additives. J Sol-Gel Sci Techn 68:387–410

    Article  Google Scholar 

  28. Kim S, Lee P, Bano S, Park Y, Nam S, Lee K (2016) Effective incorporation of TiO2 nanoparticles into polyamide thin-film composite membranes. J Appl Polym Sci 133

  29. Kassner L, Nagel K, Gruetzner RE, Korb M, Rueffer T, Lang H, Spange S (2015) Polyamide 6/silica hybrid materials by a coupled polymerization reaction. Polym Chem 6:6297–6304

    Article  Google Scholar 

  30. Moghanian H, Mobinikhaledi A, Monjezi R (2015) Synthesis and characterization of novel aliphatic-aromatic polyamide/Fe3O4 nanocomposites containing pendent 9H-xanthene groups. Des Monomers Polym 18:157–169

    Article  Google Scholar 

  31. Kanamori K (2013) Liquid-phase synthesis and application of monolithic porous materials based on organic-inorganic hybrid methylsiloxanes, crosslinked polymers and carbons. J Sol-Gel Sci Techn 65:12–22

    Article  Google Scholar 

  32. Wang F, Zhao L, Fang W, He X, Liang F, Chen H, Chen H, Du X (2016) Preparation of organic/inorganic composite phenolic resin and application in Al2O3-C refractories. Int J Appl Ceram Tec 13:133–139

    Article  Google Scholar 

  33. Noparvar-Qarebagh A, Roghani-Mamaqani H, Salami-Kalajahi M (2016) Organic-inorganic nanohybrids of novolac phenolic resin and carbon nanotube: High carbon yields by using carbon nanotube aerogel and resin incorporation into aerogel network. Micropor Mesopor Mat 224:58–67

    Article  Google Scholar 

  34. Paydayesh A, Kokabi M (2015) Highly filled organoclay/phenolic resin nanocomposite as an ablative heat shield material. Iran Polym J 24:389–397

    Article  Google Scholar 

  35. Schuetz MR, Sattler K, Deeken S, Klein O, Adasch V, Liebscher CH, Glatzel U, Senker J, Breu J (2010) Improvement of thermal and mechanical properties of a phenolic resin nanocomposite by in situ formation of silsesquioxanes from a molecular precursor. J Appl Polym Sci 117:2272–2277

    Article  Google Scholar 

  36. Yao JF, Wang HT, Chan KY, Zhang LX, Xu NP (2005) Incorporating organic polymer into silica walls: A novel strategy for synthesis of templated mesoporous silica with tunable pore structure. Micropor Mesopor Mat 82:183–189

    Article  Google Scholar 

  37. Yao J, Wang H, Zhang X, Zhu W, Wei J, Cheng Y (2007) Role of pores in the carbothermal reduction of carbon-silica nanocomposites into silicon carbide nanostructures. J Phys Chem C 111:636–641

    Article  Google Scholar 

  38. Goegelein C, Naegele G, Buitenhuis J, Tuinier R, Dhont JKG (2009) Polymer depletion-driven cluster aggregation and initial phase separation in charged nanosized colloids. J Chem Phys 130:204905

    Article  Google Scholar 

  39. Miyamoto M, Nagata K, Maruo T, Nishiyama N, Yogo K, Egashira Y, Ueyama K (2008) Highly permeable mesoporous silica membranes synthesized by vapor infiltration of tetraethoxysilane into non-ionic alkyl poly(oxyethylene) surfactant films. J Membr Sci 325:698–703

    Article  Google Scholar 

  40. Song L, Wu Q, Vogt BD (2008) Templating multiple length scales by combining phase separation, self-assembly and photopatterning in porous films. J Colloid Interf Sci 328:374–384

    Article  Google Scholar 

  41. Nakanishi K, Sagawa Y, Soga N (1991) Pore surface characteristics of macroporous silica gels prepared from polymer-containing solution. J Non-Cryst Solids 134:39–46

    Article  Google Scholar 

  42. Nakanishi K, Soga N (1992) Phase separation in silica sol-gel system containing polyacrylic acid. III. Effect of catalytic condition. J Non-Cryst Solids 142:36–44

    Article  Google Scholar 

  43. Nakanishi K, Soga N (1992) Phase separation in silica sol-gel system containing polyacrylic acid II. Effects of molecular weight and temperature. J Non-Cryst Solids 139:14–24

    Article  Google Scholar 

  44. Nakanishi K, Soga N (1992) Phase separation in silica sol-gel system containing polyacrylic acid I. Gel formaation behavior and effect of solvent composition. J Non-Cryst Solids 139:1–13

    Article  Google Scholar 

  45. Nakanishi K, Soga N (1992) Phase separation in silica sol-gel system containing polyacrylic acid. IV. Effect of chemical additives. J Non-Cryst Solids 142:45–54

    Article  Google Scholar 

  46. Nakanishi K, Nagakane T, Soga N (1998) Designing double pore structure in Alkoxy-derived silica incorporated with nonionic surfactant. J Popous Mat 5:103–110

    Article  Google Scholar 

  47. Grund S, Seifert A, Baumann G, Baumann W, Marx G, Kehr M, Spange S (2006) Monolithic silica with bimodal pore size distribution fabricated by self-separated sol-gel composite materials. Micropor Mesopor Mat 95:206–212

    Article  Google Scholar 

  48. Sun YW, Wang YJ, Guo W, Wang T, Luo GS (2006) Triblock copolymer and poly(ethylene glycol) as templates for monolithic silica material with bimodal pore structure. Micropor Mesopor Mat 88:31–37

    Article  Google Scholar 

  49. Takahashi R, Sato S, Sodesawa T, Suzuki K, Tafu M, Nakanishi K, Soga N (2001) Phase separation in sol-gel process of alkoxide-derived silica-zirconia in the presence of polyethylene oxide. J Am Ceram Soc 84:1968–1976

    Article  Google Scholar 

  50. Zhang H, Hardy GC, Khimyak YZ, Rosseinsky MJ, Cooper AI (2004) Synthesis of hierarchically porous silica and metal oxide beads using emulsion-templated polymer scaffolds. Chem Mater 16:4245–4256

    Article  Google Scholar 

  51. Nakanishi K (2007) Functional porous materials via sol-gel with phase separation. J Ceram Soc Jpn 115:169–175

    Article  Google Scholar 

  52. Konishi J, Fujita K, Oiwa S, Nakanishi K, Hirao K (2008) Crystalline ZrO2 monoliths with well-defined macropores and mesostructured skeletons prepared by combining the alkoxy-derived sol-gel process accompanied by phase separation and the solvothermal process. Chem Mater 20:2165–2173

    Article  Google Scholar 

  53. Wang K, Yao J, Wang H, Cheng Y (2008) Effect of seeding on formation of silicon carbide nanostructures from mesoporous silica-carbon nanocomposites. Nanotechnology 19:175605

    Article  Google Scholar 

  54. Wang K, Wang H, Cheng Y (2010) Synthesis of nanostructured silicon carbide spheres from mesoporous C-SiO2 nanocomposites. Chem Commun 46:303–305

    Article  Google Scholar 

  55. Manocha SM, Vashistha DY, Manocha LM (1997) Studies of the pyrolysis behaviour of silica sol copolymerized with furfuryl alcohol. J Mater Sci Lett 16:705–707

    Article  Google Scholar 

  56. Spange S, Muller H, Jager C, Bellmann C (2002) Fabrication of carbon/silica hybrid materials using cationic polymerization and the sol-gel process. Macromol Symp 177:111–124

    Article  Google Scholar 

  57. Zarbin A, Bertholdo R, Oliveira M (2002) Preparation, characterization and pyrolysis of poly(furfuryl alcohol)/porous silica glass nanocomposites: novel route to carbon template. Carbon 40:2413–2422

    Article  Google Scholar 

  58. Wang H, Yao J (2006) Use of poly(furfuryl alcohol) in the fabrication of nanostructured carbons and nanocomposites. Ind Eng Chem Res 45:6393–6404

    Article  Google Scholar 

  59. Yao J, Wang H, Zhang X, Zhu W, Wei J, Cheng Y (2007) Role of pores in the carbothermal reduction of carbon-silica nanocomposites into silicon carbide nanostructures. J Phys Chem C 111:636–641

    Article  Google Scholar 

  60. Wan Y, Shi Y, Zhao D (2008) Supramolecular aggregates as templates: ordered mesoporous polymers and carbons. Chem Mater 20:932–945

    Article  Google Scholar 

  61. Flory PJ (1942) Thermodynamics of high polymer solutions. J Chem Phys 10:51

    Article  Google Scholar 

  62. Huggins ML (1942) Thermodynamic properties of solutions of long-chain compounds. Ann NY Acad Sci 43:1–32

  63. K. SWS (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem 57:603–619

    Google Scholar 

  64. Ben-Arfa BAE, Miranda Salvado IM, Ferreira JMF, Pullar RC (2017) Novel route for rapid sol-gel synthesis of hydroxyapatite, avoiding ageing and using fast drying with a 50-fold to 200-fold reduction in process time. Mat Sci Eng C-Mater 70:796–804

    Article  Google Scholar 

  65. Sakuragi A, Igarashi Y, Kajihara K, Kanamura K (2016) Synthesis of silanol-rich long-life polysilsesquioxane liquids by cosolvent-free hydrolytic polycondensation of organotrimethoxysilanes followed by aging. Dalton Trans 45:3151–3157

    Article  Google Scholar 

  66. Soderzhinova MM, Tarasova DV, Chibirova FK (2016) Aging of titania hydrosols prepared via ultrasonic processing. Inorg Mater 2:470–475

    Article  Google Scholar 

  67. Veliscek-Carolan J, Knott R, Hanley T (2015) Effects of precursor solution aging and other parameters on synthesis of ordered mesoporous titania powders. J Phys Chem C 119:7172–7183

    Article  Google Scholar 

  68. Letaief N, Lucas-Girot A, Oudadesse H, Meleard P, Pott T, Jelassi J, Dorbez-Sridi R (2014) Effect of aging temperature on the structure, pore morphology and bioactivity of new sol-gel synthesized bioglass. J Non-Cryst Solids 402:194–199

    Article  Google Scholar 

  69. Zhong H, Zhu G, Yang J, Wang P, Yang Q (2007) Periodic mesoporous hybrid monolith with hierarchical macro-mesopores. Micropor Mesopor Mat 100:259–267

    Article  Google Scholar 

  70. Kim EJ (1995) Low pressure chemical vapor deposition of silicon dioxide films by thermal decomposition of tetra-alkoxysilanes. J Electrochem Soc 142:676

    Article  Google Scholar 

  71. Kang KK, Rhee HK (2005) Synthesis and characterization of novel mesoporous silica with large wormhole-like pores: use of TBOS as silicon source. Micropor Mesopor Mat 84:34–40

    Article  Google Scholar 

  72. Miyake Y, Yumoto T, Kitamura H, Sugimoto T (2002) Solubilization of organic compounds into as-synthesized spherical mesoporous silica. Phys Chem Chem Phys 4:2680–2684

    Article  Google Scholar 

  73. Miyake Y, Kato T (2005) The formation process of spherical mesoporous silica with reverse nanostructure of MCM41 in a two-phase system. J Chem Eng Jpn 38:60–66

    Article  Google Scholar 

  74. Miyake Y, Hanaeda M, Asada M (2007) Separation of organic compounds by spherical mesoporous silica prepared from W/O microemulsions of tetrabutoxysilane. Ind Eng Chem Res 46:8152–8157

    Article  Google Scholar 

  75. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548–552

    Article  Google Scholar 

  76. Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc 120:6024–6036

    Article  Google Scholar 

  77. Kim SS, Pauly TR, Pinnavaia TJ (2000) Non-ionic surfactant assembly of ordered, very large pore molecular sieve silicas from water soluble silicates. Chem Commun 17:1661–1662

    Article  Google Scholar 

  78. Kim SS, Pauly TR, Pinnavaia TJ (2000) Non-ionic surfactant assembly of wormhole silica molecular sieves from water soluble silicates. Chem Commun 10:835–836

    Article  Google Scholar 

  79. Spange S, Schütz H, Martinez R (1993) [Composites from furfuryl alcohol and inorganic solids by cationic initiation, 2. Spectroscopic studies of poly(furfuryl alcohol)-silica composites obtained by trifluoroacetic acid initiation]. Die Makromol Chem 194:1537–1544

    Article  Google Scholar 

  80. Spange S, Winkelmann H, Martinez R (1993) [Composites from furfuryl alcohol and inorganic solids by cationic initiation, 3. Scanning electron microscopic investigations of solid poly(furfuryl alcohol)-silica composites]. Die Angew Makromol Chem 208:125–131

    Article  Google Scholar 

  81. Spange S, Heublein B, Schramm A, Martinez R (1992) [Composites from furfuryl alcohol and inorganic solids by cationic initiation, 1. General features]. Die Makromol Chem 13:511–515

    Article  Google Scholar 

Download references

Acknowledgements

K.W. thanks the financial support of this work from the “the Fundamental Research Funds for the Central Universities (WUT: 2017IVA088). This work is also supported by State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (Wuhan University of Technology). The authors acknowledge use of facilities within the Monash Center for Electron Microscopy for TEM and SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Wang, H. & Cheng, YB. Morphology control of mesoporous silica-carbon nanocomposites via phase separation of poly(furfuryl alcohol) and silica in the sol–gel synthesis. J Sol-Gel Sci Technol 82, 664–674 (2017). https://doi.org/10.1007/s10971-017-4358-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4358-3

Keywords

Navigation