Skip to main content
Log in

Mechanical and tribological behavior of sol–gel TiO2–CdO films measured at the microscale levels

  • Original Paper: Industrial and technological applications of sol-gel and hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this work, we present a mechanical and tribological study at the microscale of sol–gel TiO2–CdO films, which are used in photocatalytic applications. The films were deposited as a good-quality polycrystalline material with majority of CdO or CdTiO3 phases depending on their Ti/Cd concentration ratios. Films with the majority of CdTiO3 phase presented the highest hardness and lowest plastic deformation during the indentation tests. The evolution of wear, friction coefficient, and roughness on the films was quantitatively studied by multiple-passes measurements on a depth-sensing instrumented indentation system. These measurements allowed us to observe the films’ wear mechanisms and correlate them with their microstructure and mechanical properties. To compare the crystal structure, mechanical properties and tribological behavior of these films, we also analyzed sol–gel CdO and TiO2 films deposited under similar conditions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Diliegros-godines CJ, Flores-Ruiz FJ, Castanedo-Pérez R, et al. (2016) Mechanical and tribological properties of the oxide thin films obtained by sol–gel method. In: Klein L (ed) Handbook of sol–gel science and technology. Springer International Publishing, Switzerland, pp 1–14. doi:10.1007/978-3-319-19454-7_115-1

  2. Chan CM, Cao GZ, Fong H et al. (2000) Nanoindentation and adhesion of sol–gel-derived hard coatings on polyester. J Mater Res 15:148–154. doi:10.1557/JMR.2000.0025

    Article  Google Scholar 

  3. Chen X, Selloni A (2014) Introduction: titanium dioxide (TiO2) nanomaterials. Chem Rev 114:9281–9282. doi:10.1021/cr500422r

    Article  Google Scholar 

  4. Giannakopoulou T, Todorova N, Giannouri M et al. (2014) Optical and photocatalytic properties of composite TiO2/ZnO thin films. Catal Today 230:174–180. doi:10.1016/j.jallcom.2012.04.089

    Article  Google Scholar 

  5. Islam S, Rahman RA, Othaman Z et al. (2013) Preparation and characterization of crack-free sol–gel based SiO2–TiO2 hybrid nanoparticle film. J Sol Gel Sci Technol 68:162–168. doi:10.1007/s10971-013-3147-x

    Article  Google Scholar 

  6. Wang Y, Wang SJ, Shu X et al. (2014) Preparation and property of sol-enhanced Ni–B–TiO2 nano-composite coatings. J Alloys Compd 617:472–478. doi:10.1016/j.jallcom.2014.08.060

    Article  Google Scholar 

  7. Celik E, Keskin I, Kayatekin I et al. (2007) Al2O3–TiO2 thin films on glass substrate by sol-gel technique. Mater Charact 58:349–357. doi:10.1016/j.matchar.2006.05.015

    Article  Google Scholar 

  8. Abd El-Lateef HM, Khalaf MM (2015) Corrosion resistance of ZrO2–TiO2 nanocomposite multilayer thin films coated on carbon steel in hydrochloric acid solution. Mater Charact 108:29–41. doi:10.1016/j.matchar.2015.08.010

    Article  Google Scholar 

  9. Wang Y, Tay SL, Wei S et al. (2015) Microstructure and properties of sol-enhanced Ni–Co–TiO2 nano-composite coatings on mild steel. J Alloys Compd 649:222–228. doi:10.1016/j.jallcom.2015.07.147

    Article  Google Scholar 

  10. de Anda Reyes ME, Torres Delgado G, Castanedo Pérez R et al. (2012) Optimization of the photocatalytic activity of CdO + CdTiO3 coupled oxide thin films obtained by sol–gel technique. J Photochem Photobiol A Chem 228:22–27. doi:10.1016/j.jphotochem.2011.11.007

    Article  Google Scholar 

  11. Hernández-García FA, Torres-Delgado G, Castanedo-Pérez R, Zelaya-Ángel O (2015) Photodegradation of gaseous C6H6 using CdO + CdTiO3 and TiO2 thin films obtained by sol–gel technique. J Photochem Photobiol A Chem 310:52–59. doi:10.1016/j.jphotochem.2015.05.021

    Article  Google Scholar 

  12. Zhang H, Banfield JF (2014) Structural characteristics and mechanical and thermodynamic properties of nanocrystalline TiO2. Chem Rev 114:9613–9644. doi:10.1021/cr500072j

    Article  Google Scholar 

  13. Sobczyk-Guzenda A, Pietrzyk B, Jakubowski W et al. (2013) Mechanical, photocatalytic and microbiological properties of titanium dioxide thin films synthesized with the sol–gel and low temperature plasma deposition techniques. Mater Res Bull 48:4022–4031. doi:10.1016/j.materresbull.2013.06.024

    Article  Google Scholar 

  14. Fattakhova-Rohlfing D, Zaleska A, Bein T (2014) Three-dimensional titanium dioxide nanomaterials. Chem Rev 114:9487–9558. doi:10.1021/cr500201c

    Article  Google Scholar 

  15. Yaghoubi H, Taghavinia N, Alamdari EK, Volinsky AA (2010) Nanomechanical properties of TiO2 granular thin films. ACS Appl Mater Interfaces 2:2629–2636. doi:10.1021/am100455q

    Article  Google Scholar 

  16. Jia Q, Zhang Y, Wu Z, Zhang P (2007) Tribological properties of anatase TiO2 sol–gel films controlled by mutually soluble dopants. Tribol Lett 26:19–24. doi:10.1007/s11249-006-9177-6

    Article  Google Scholar 

  17. Zhang W, Liu W, Wang C (2002) Tribological behavior of sol–gel TiO2 films on glass. Wear 253:377–384. doi:10.1016/S0043-1648(02)00139-4

    Article  Google Scholar 

  18. Lackner JM, Waldhauser W, Ebner R et al. (2004) Pulsed laser deposition of titanium oxide coatings at room temperature-structural, mechanical and tribological properties. Surf Coat Technol 180–181:585–590. doi:10.1016/j.surfcoat.2003.10.099

    Article  Google Scholar 

  19. Diliegros-Godines CJ, Flores-Ruiz FJ, Castanedo-Pérez R et al. (2015) Mechanical and tribological properties of CdO + SnO2 thin films prepared by sol–gel. J Sol Gel Sci Technol 74:114–120. doi:10.1007/s10971-014-3584-1

    Article  Google Scholar 

  20. Broitman E, Flores-Ruiz FJ (2015) Novel method for in situ and simultaneous nanofriction and nanowear characterization of materials. J Vac Sci Technol A 33:43201. doi:10.1116/1.4921584

    Article  Google Scholar 

  21. Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19:3–20. doi:10.1557/jmr.2004.19.1.3

    Article  Google Scholar 

  22. Broitman E (2017) Indentation hardness measurements at macro-, micro-, and nanoscale: a critical overview. Tribol Lett 65:23. doi:10.1007/s11249-016-0805-5

    Article  Google Scholar 

  23. Nečas D, Klapetek P (2012) Gwyddion: an open-source software for SPM data analysis. Cent Eur J Phys 10:181–188. doi:10.2478/s11534-011-0096-2

    Google Scholar 

  24. Gao F, He J, Wu E et al. (2003) Hardness of covalent crystals. Phys Rev Lett 91:15502. doi:10.1103/PhysRevLett.91.015502

    Article  Google Scholar 

  25. Matthews A, Franklin S, Holmberg K (2007) Tribological coatings: contact mechanisms and selection. J Phys D 40:5463–5475. doi:10.1088/0022-3727/40/18/S07

    Article  Google Scholar 

  26. Rivera-Tello CD, Broitman E, Flores-Ruiz FJ et al. (2016) Mechanical properties and tribological behavior at micro and macro-scale of WC/WCN/W hierarchical multilayer coatings. Tribol Int 101:194–203. doi:10.1016/j.triboint.2016.04.017

    Article  Google Scholar 

  27. Leyland A, Matthews A (2000) On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour. Wear 246:1–11. doi:10.1016/S0043-1648(00)00488-9

    Article  Google Scholar 

  28. Charitidis C, Koumoulos E, Dragatogiannis D (2013) Nanotribological behavior of carbon based thin films: friction and lubricity mechanisms at the nanoscale. Lubricants 1:22–47. doi:10.3390/lubricants1020022

    Article  Google Scholar 

  29. Flores-Ruiz FJ, Herrera-Gomez A, Camps E, Espinoza-Beltrán FJ (2015) Elastic heterogeneities at the nanoscale in DLC films grown by PLD. Mater Res Express 2:25009. doi:10.1088/2053-1591/2/2/025009

    Article  Google Scholar 

  30. Fischer-Cripps AC (2011) Analysis of nanoindentation test data. In: Fischer-Cripps AC (ed) Nanoindentation. Springer, New York, NY, p 39–75

    Chapter  Google Scholar 

  31. Gaillard Y, Rico VJ, Jimenez-Pique E, González-Elipe AR (2009) Nanoindentation of TiO2 thin films with different microstructures. J Phys D 42:145305. doi:10.1088/0022-3727/42/14/145305

    Article  Google Scholar 

  32. Queener CA, Smith TC, Mitchell WL (1965) Transient wear of machine parts. Wear 8:391–400. doi:10.1016/0043-1648(65)90170-5

    Article  Google Scholar 

  33. Mortazavi V, Khonsari MM (2016) On the prediction of transient wear. J Tribol 138:41604. doi:10.1115/1.4032843

    Article  Google Scholar 

  34. Archard JF (1953) Contact and rubbing of flat surfaces. J Appl Phys 24:981. doi:10.1063/1.1721448

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by Consejo Nacional de Ciencia y Tecnología (CONACyT) under Project Fomix 2012-192880 and project CB-2008-106912. The authors thank to CONACyT for the fellowship awarded to F. A. Hernández-García. The authors also thank to SEP-PRODEP No. 511-6/17-605 for the postdoctoral fellowship awarded to C. J. Diliegros-Godines. Esteban Broitman acknowledges financial support from the Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linköping University (Faculty Grant SFO Mat LiU No 2009 00971).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Javier Flores-Ruiz.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Francisco Javier Flores-Ruiz and Carolina Janani Diliegros-Godines have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flores-Ruiz, F.J., Diliegros-Godines, C.J., Hernández-García, F.A. et al. Mechanical and tribological behavior of sol–gel TiO2–CdO films measured at the microscale levels. J Sol-Gel Sci Technol 82, 682–691 (2017). https://doi.org/10.1007/s10971-017-4346-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4346-7

Keywords

Navigation