Skip to main content
Log in

Transparent polyvinylsilsesquioxane aerogels: investigations on synthetic parameters and surface modification

  • Invited Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Systematic investigations on the effect of synthetic conditions onto the properties of polyvinylsilsesquioxane (CH2=CHSiO3/2) aerogels have been conducted. As previously reported, transparent polyvinylsilsesquioxane aerogels can be obtained by utilizing a liquid surfactant as a solvent and a two-step sol–gel reaction involving hydrolysis catalyzed by a strong acid and subsequent polycondensation by a strong base. In this study, effects of base catalyst, gelation and aging conditions, amount of surfactant and concentration of acid catalyst have been investigated. With the optimized synthetic condition, the value of light transmittance reaches as high as 70% (at the wavelength of 550 nm for a 10-mm thick sample). Applicability of addition reactions utilizing thiol-ene reactions and hydrosilylation has also been surveyed. Thiol-ene reactions are relatively effective and can modify surface hydrophobicity and mechanical properties of polyvinylsilsesquioxane aerogels. In the case of hydrosilylation, a partial addition of a hydrosilane compound onto the polyvinylsilsesquioxane gel surface can be observed. Addition reactions, in particular thiol-ene reactions, are found to be profitable for implementing chemical functionality on the transparent aerogels.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hüsing N, Schubert U (1998) Aerogels-airy materials: chemistry, structure, and properties. Angew Chem Int Ed 37:22–45

    Article  Google Scholar 

  2. Alexander S (1989) Vibrations of fractals and scattering of light from aerogels. Phys Rev B 40:7953–7965

    Article  Google Scholar 

  3. Cao W, Hunt AJ (1994) Improving the visible transparency of silica aerogels. J Non-Cryst Solids 176:18–25

    Article  Google Scholar 

  4. Baetens R, Jelle BP, Gustavsen A (2011) Aerogel insulation for building applications: a state-of-the-art review. Energy Build 43:761–769

    Article  Google Scholar 

  5. Maleki H, Durães L, Portugal A (2014) An overview on silica aerogels synthesis and different mechanical reinforcing strategies. J Non-Cryst Solids 385:55–74

    Article  Google Scholar 

  6. Kanamori K, Aizawa M, Nakanishi K, Hanada T (2007) New transparent methylsilsesquioxane aerogels and xerogels with improved mechanical properties. Adv Mater 19:1589–1593

    Article  Google Scholar 

  7. Kanamori K, Aizawa M, Nakanishi K, Hanada T (2008) Elastic organic-inorganic hybrid aerogels and xerogels. J Sol Gel Sci Technol 48:172–181

    Article  Google Scholar 

  8. Kanamori K, Nakanishi K, Hanada T (2009) Sol-gel synthesis, porous structure, and mechanical property of polymethylsilsesquioxane aerogels. J Ceram Soc Jpn 117:1333–1338

    Article  Google Scholar 

  9. Nakanishi K, Kanamori K (2005) Organic-inorganic hybrid poly(silsesquioxane) monoliths with controlled macro- and mesopores. J Mater Chem 15:3776–3786

    Article  Google Scholar 

  10. Loy DA, Baugher BM, Baugher CR, Schneider DA, Rahimian K (2000) Substituent effects on the sol-gel chemistry of organotrialkoxysilanes. Chem Mater 12:3624–3632

    Article  Google Scholar 

  11. Rao AV, Bhagat SD, Hirashima H, Pajonk GM (2006) Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor. J Colloid Interface Sci 300:279–285

    Article  Google Scholar 

  12. Dong H, Brook MA, Brennan JD (2005) A new route to monolithic methylsilsesquioxane: gelation behavior of methyltrimethoxysilane and morphology of resulting methylsilsesquioxanes under one-step and two-step processing. Chem Mater 17:2807–2816

    Article  Google Scholar 

  13. Kanamori K (2014) Monolithic silsesquioxane materials with well-defined pore structure. J Mater Res 29:2773–2786

    Article  Google Scholar 

  14. Hayase G, Kugimiya K, Ogawa M, Kodera Y, Kanamori K, Nakanishi K (2014) The thermal conductivity of polymethylsilsesquioxane aerogels and xerogels with varied pore sizes for practical application as thermal superinsulators. J Mater Chem A 2:6525–6531

    Article  Google Scholar 

  15. Shimizu T, Kanamori K, Maeno A, Kaji H, Doherty CM, Falcaro P, Nakanishi K (2016) Transparent, highly insulating polyethyl- and polyvinylsilsesquioxane aerogels: mechanical improvements by vulcanization for ambient pressure drying. Chem Mater 28:6860–6868

    Article  Google Scholar 

  16. Brook MA (2000) Silicon in organic, organometallic, and polymer chemistry. Wiley, New York, NY

    Google Scholar 

  17. Scherer GW (1992) Stress development during supercritical drying. J Non-Cryst Solids 145:33–40

    Article  Google Scholar 

  18. Zhu Y, Morimoto Y, Shimizu T, Morisato K, Takeda K, Kanamori K, Nakanishi K (2015) Synthesis of hierarchically porous polymethylsilsesquioxane monoliths with controlled mesopores for HPLC separation. J Ceram Soc Jpn 123:770–778

    Article  Google Scholar 

  19. Reichenauer G, Scherer GW (2001) Extracting the pore size distribution of compliant materials from nitrogen adsorption. Colloids Surf A 187-188:41–50

    Article  Google Scholar 

  20. Shimizu T, Kanamori K, Maeno A, Kaji H, Nakanishi K (2016) Transparent ethylene-bridged polymethylsiloxane aerogels and xerogels with improved bending flexibility. Langmuir 32:13427–13434

    Article  Google Scholar 

  21. Ishida H, Koenig JL (1978) Fourier transform infrared spectroscopic study of the silane coupling agent/porous silica interface. J Colloid Sci 64:555–564

    Article  Google Scholar 

  22. Hæreid S, Anderson J, Einarsrud MA, Hua DW, Smith DM (1995) Thermal and temporal aging of TMOS-based aerogel precursors in water. J Non-Cryst Solids 185:221–226

    Article  Google Scholar 

  23. Brinker CJ, Scherer GW (1990) Sol–gel science: The physics and chemistry of sol–gel processing. Academic, San Diego, CA, Chapter 4

    Google Scholar 

  24. Dong H, Brennan JD (2006) Macroporous monolithic methylsilsesquioxanes prepared by a two-step acid/acid processing method. Chem Mater 18:4176–4182

    Article  Google Scholar 

  25. Hayase G, Kanamori K, Nakanishi K (2012) Structure and properties of polymethylsilsesquioxane aerogels synthesized with surfactant n-hexadecyltrimethylammonium chloride. Microporous Mesoporous Mater 158:247–252

    Article  Google Scholar 

  26. Lowe AB (2010) Thiol-ene “click” reactions and recent applications in polymer and materials synthesis. Polym Chem 1:17–36

    Article  Google Scholar 

  27. Wang Z, Dai Z, Wu J, Zhao N, Xu J (2013) Vacuum-dried robust bridged silsesquioxane aerogels. Adv Mater 25:4494–4497

    Article  Google Scholar 

  28. Nischang I, Brüggemann O, Teasdale I (2011) Facile, single-step preparation of versatile, high-surface-area, hierarchically structured hybrid materials. Angew Chem Int Ed 50:4592–4596

    Article  Google Scholar 

  29. Hayase G, Kanamori K, Hasegawa G, Maeno A, Kaji H, Nakanishi K (2013) A superamphiphobic macroporous silicone monolith with marshmallow-like flexibility. Angew Chem Int Ed 52:10788–10791

    Article  Google Scholar 

  30. Brozek EM, Zharov I (2009) Internal functionalization and surface modification of vinylsilsesquioxane nanoparticles. Chem Mater 21:1451–1456

    Article  Google Scholar 

  31. Cui S, Cheng W, Shen X, Fan M, Russell AT, Wu Z, Yi X (2011) Mesoporous amine-modified SiO2 aerogel: a potential CO2 sorbent. Energy Environ Sci 4:2070–2074

    Article  Google Scholar 

  32. Van Humbeck JF, McDonald TM, Jing X, Wiers BM, Zhu G, Long JR (2014) Ammonia capture in porous organic polymers densely functionalized with Brønsted acid groups. J Am Chem Soc 136:2432–2440

    Article  Google Scholar 

  33. Meador MAB, Weber AS, Hindi A, Naumenko M, McCorkle L, Quade D, Vivod SL, Gould GL, White S, Deshpande K (2009) Structure-property relationships in porous 3D nanostructures: epoxy-cross-linked silica aerogels produced using ethanol as the solvent. ACS Appl Mater Interfaces 1:894–906

    Article  Google Scholar 

  34. Nguyen BN, Meador MAB, Tousley ME, Shonkwiler B, McCorkle L, Scheiman DA, Palczer A (2009) Tailoring elastic properties of silica aerogels cross-linked with polystyrene. ACS Appl Mater Interfaces 1:621–630

    Article  Google Scholar 

  35. Capeletti LB, Baibich IM, Butler IS, dos Santos JHZ (2014) Infrared and Raman spectroscopic characterization of some organic substituted hybrid silicas. Spectrochim Acta Part A 133:619–625

    Article  Google Scholar 

  36. Bryant MA, Pemberton JE (1991) Surface Raman scattering of self-assembled monolayers formed from 1-alkanethiols: behavior of films at Au and comparison to films at Ag. J Am Chem Soc 113:8284–8293

    Article  Google Scholar 

  37. Buriak JM (2002) Organometallic chemistry on silicon and germanium surfaces. Chem Rev 102:1271–1308

    Article  Google Scholar 

  38. Stewart MP, Buriak JM (1998) Photopatterned hydrosilylation on porous silicon. Angew Chem Int Ed 37:3257–3260

    Article  Google Scholar 

  39. Rogozhina EV, Eckhoff DA, Gratton E, Braun PV (2006) Carboxyl functionalization of ultrasmall luminescent silicon nanoparticles through thermal hydrosilylation. J Mater Chem 16:1421–1430

    Article  Google Scholar 

  40. Maleki H, Durães L, Portugal A (2015) Synthesis of mechanically reinforced silica aerogels via surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization. J Mater Chem A 3:1594–1600

    Article  Google Scholar 

Download references

Acknowledgements

The present study has been performed under financial support from Advanced Low Carbon Technology Research and Development Program (ALCA, Japan Science and Technology Agency).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuyoshi Kanamori.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimizu, T., Kanamori, K. & Nakanishi, K. Transparent polyvinylsilsesquioxane aerogels: investigations on synthetic parameters and surface modification. J Sol-Gel Sci Technol 82, 2–14 (2017). https://doi.org/10.1007/s10971-017-4339-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4339-6

Keywords

Navigation