Skip to main content
Log in

Crucial role of sol–gel synthesis in the structural and magnetic properties of LaFe0.5(Co/Ni)0.5O3 perovskites

  • Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Iron-based perovskites LaFe0.5M0.5O3, with the orthorhombic (S.G. Pbnm) and rhombohedral (S.G. R-3c) structure for M=Co and Ni, respectively were synthesized using the sol–gel method, in contrast to the literature results. Magnetic investigations reveal that LaFe0.5Co0.5O3 is a canted antiferromagnet and reaches a magnetic transition of 370 K, i.e., much above the 300 K value observed by previous authors, whereas LaFe0.5Ni0.5O3 is antiferromagnetic at low temperature.

Graphical Abstract

The sol–gel synthesized LaFe0.5Co0.5O3 perovskite to be stabilized at room temperature with a pure orthorhombic phase. The magnetization behavior reveals the perovskite is canted antiferromagnet at low temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. White RL (1969) Review of recent work on the magnetic and spectroscopic properties of the rare-earth orthoferrites. J Appl Phys 40:1061–1069

    Article  Google Scholar 

  2. Delmastro A, Mazza D, Ronchetti S, Vallino M, Spinicci R, Brovetto P (2001) Synthesis and characterization of non-stoichiometric LaFeO3 perovskite. Mater Sci Eng B 79:140–145

    Article  Google Scholar 

  3. Seo JW, Fullerton EE, Nolting F, Scholl A, Fompeyrine J, Locquet J-P (2008) Antiferromagnetic LaFeO3 thin films and their effect on exchange bias. J Phys Condens Matter 20:264014

    Article  Google Scholar 

  4. Köferstein R, Jäger L, Ebbinghaus SG (2013) Magnetic and optical investigations on LaFeO3 powders with different particle sizes and corresponding ceramics. Solid State Ionics 249:1–5

    Article  Google Scholar 

  5. Toan NN, Saukko S, Lantto V (2003) Gas sensing with semiconducting perovskite oxide LaFeO3. Phys B Condens Matter 327:279–282

    Article  Google Scholar 

  6. Song P, Qin H, Zhang L, An K, Lin Z, Hu J, Jiang M (2005) The structure, electrical and ethanol-sensing properties of La1-xPbxFeO3 perovskite ceramics with x ≤ 0.3, Sensors Actuators. B Chem 104:312–316

    Google Scholar 

  7. Ding J, Lu X, Shu H, Xie J, Zhang H (2010) Microwave-assisted synthesis of perovskite ReFeO3 (Re: La, Sm, Eu, Gd) photocatalyst. Mater Sci Eng B Solid-State Mater Adv Technol 171:31–34

    Article  Google Scholar 

  8. Tang P, Tong Y, Chen H, Cao F, Pan G (2013) Microwave-assisted synthesis of nanoparticulate perovskite LaFeO3 as a high active visible-light photocatalyst. Curr Appl Phys 13:340–343

    Article  Google Scholar 

  9. Minh NQ (1993) Ceramic fuel cells. J Am Ceram Soc 76:563–588

    Article  Google Scholar 

  10. Huang K, Lee HY, Goodenough JB (1998) Sr-and Ni-Doped LaCoO3 and LaFeO3 Perovskites New Cathode Materials for Solid-Oxide Fuel Cells. J Electrochem Soc 145:3220–3227

    Article  Google Scholar 

  11. Taylor FH, Buckeridge J, Catlow RA (2016) Defects and oxide ion migration in the solid oxide fuel cell cathode material LaFeO3. Chem Mater 28:8210–8220

    Article  Google Scholar 

  12. Gateshki M, Suescun L, Kolesnik S, Mais J, Świerczek K, Short S, Dabrowski B (2008) Structural, magnetic and electronic properties of LaNi0.5Fe0.5O3 in the temperature range 5-1000K. J Solid State Chem 181:1833–1839

    Article  Google Scholar 

  13. Massa NE, Falcón H, Salva H, Carbonio RE (1997) Infrared reflectivity of the solid solutions LaNi1–xFexO3 (0.00< x< 1. 0). Phys Rev B 56:10178

    Article  Google Scholar 

  14. Dashora A, Sahariya J, Choudhary RJ, Phase DM, Itou M, Sakurai Y, Ahuja BL (2013) Feasibility of magnetic Compton scattering in measurement of small spin moments: A study on LaFe1-xNixO3 (x= 0.4 and 0.5). Appl Phys Lett 102:142403

    Article  Google Scholar 

  15. Choudhary RJ, Kumar R, Khan MW, Srivastava JP, Patil SI, Arora SK, Shvets IV (2005) Exposition of semiconducting and ferromagnetic properties of pulsed-laser-deposited thin films of LaFe1-xNixO3 (x = 0.3, 0.4, and 0.5). Appl Phys Lett 87:132104

    Article  Google Scholar 

  16. Yu J, Kamazawa K, Louca D (2010) Nature of magnetoelastic coupling with the isovalent substitution at the B-site in LaCo1-yByO3. Phys Rev B 82:224101

    Article  Google Scholar 

  17. Karpinsky DV, Troyanchuk IO, Szymczak H, Tovar M others (2005) Crystal structure and magnetic ordering of the LaCo1-xFexO3 system. J Phys Condens Matter 17:7219

    Article  Google Scholar 

  18. Li X, Zhang H, Li S, Chi F, Zhao M (1993) Preparation of nanocrystalline solid material LaFe0.5Co0.5O3 with the citric acid method and its XPS study on the absorption of oxygen. Mater Chem Phys 34:58–61

    Article  Google Scholar 

  19. Haron W, Thaweechai T, Wattanathana W, Laobuthee A, Manaspiya H, Veranitisagul C, Koonsaeng N (2013) Structural characteristics and dielectric properties of La1-xCoxFeO3 synthesized via metal organic complexes. Energy Procedia. 34:791–800

    Article  Google Scholar 

  20. Wang Y, Cui X, Li Y, Chen L, Shu Z, Chen H, Shi J (2013) High surface area mesoporous LaFexCo1-xO3 oxides: synthesis and electrocatalytic property for oxygen reduction. Dalt Trans 42:9448–9452

    Article  Google Scholar 

  21. Kundu AK, Pralong V, Caignaert V, Rao CNR, Raveau B (2007) Enhancement of ferromagnetism by Co and Ni substitution in the perovskite LaBiMn2O6+δ. J Mater Chem 17:3347–3353

    Article  Google Scholar 

  22. Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946

    Article  Google Scholar 

  23. J Rodriguez-Carvajal, An introduction to the program FullProf 2000, Lab. Leon Brillouin, CEA-CNRS Saclay, Fr. (2001).

Download references

Acknowledgements

The authors would like to thank Mr. A. Bajpai for his help during samples preparation. AKK and MMS thank the Science and Engineering Research Board (IN), India for financial support through the project grant # EMR/2016/000083.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asish K. Kundu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solanki, V., Das, S., Kumar, S. et al. Crucial role of sol–gel synthesis in the structural and magnetic properties of LaFe0.5(Co/Ni)0.5O3 perovskites. J Sol-Gel Sci Technol 82, 536–540 (2017). https://doi.org/10.1007/s10971-017-4319-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4319-x

Keywords

Navigation