Skip to main content
Log in

One-pot synthesis of WO3 structures at 95 °C using HCl

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Hydrothermally grown monoclinic tungsten trioxide on fluorine-doped tin dioxide glass substrates was performed using an aqueous solution of tungsten trioxide in powder form adjusting the pH through HCl for various growth periods at 95 °C. Enhanced crystalline quality oxide coatings were obtained using HCl concentration of 6 M for 24 h. These samples exhibited large crystallites consisting of agglomerated nanoparticles. It has been found that they presented an intercalated charge storage capability of 3.97 C cm−2 with a respective capacitance of 197.5 F g−1. The importance of achieving crystalline low-cost tungsten trioxide with enhanced electrochemical performance is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Vernardou D, Drosos H, Spanakis E, Koudoumas E, Savvakis C, Katsarakis N (2011) J Mater Chem 21:513–517

    Article  Google Scholar 

  2. Ashraf S, Blackman CS, Palgrave RG, Parkin IP (2007) J Mater Chem 17:1063–1070

    Article  Google Scholar 

  3. Trapatseli M, Vernardou D, Tzanetakis P, Spanakis E (2011) ACS Appl Mater Interfaces 3:2726–2731

    Article  Google Scholar 

  4. Svensson JSEM, Granqvist CG (1984) Appl Phys Lett 45:828–830

    Article  Google Scholar 

  5. Huang K, Pan Q, Yang F, Ni S, Wie X, He D (2008) J Phys D Appl Phys 41:155417-6

    Google Scholar 

  6. Susanti D, Dwi Wibawa RN, Tananta L, Purwaningsih H, Fajarin R, Kusuma GE (2013) Adv Mater Sci 7:370–378

    Google Scholar 

  7. Guo YG, Hu JS, Wan LJ (2008) Adv Mater 20:2878–2887

    Article  Google Scholar 

  8. Ozkan E, Lee S, Liu P, Tracy CE, Tepehan FJ, Pitts JR, Deb SK (2002) Solid State Ion 149:139–146

    Article  Google Scholar 

  9. Gao L, Wang X, Xie Z, Song W, Wang L, Wu X, Qu F, Chen D, Shen G (2013) J Mater Chem A 1:7167–7173

    Article  Google Scholar 

  10. Li WJ, Fu ZW (2010) Appl Surf Sci 256:2447–2452

    Article  Google Scholar 

  11. Sadakane M, Sasaki K, Kunioku H, Ohtani B, Ueda W, Abe R (2008) Chem Commun (48):6552–6554

  12. Mozalev A, Khatko V, Bittencourt C, Hassel AW, Gorokh G, Llobet E, Correig X (2008) Chem Mater 20:6482

    Article  Google Scholar 

  13. Cao B, Chen J, Tang X, Zhou W (2009) J Mater Chem 19:2323–2327

    Article  Google Scholar 

  14. Blackman CS, Parkin IP (2005) Chem Mater 17:1583–1590

    Article  Google Scholar 

  15. Neill SO, Parkin IP, Clark RJJ, Mills A, Elliott N (2004) Chem Vap Depos 10:136–141

    Article  Google Scholar 

  16. Ashkarran AA, Irajizad A, Ahadian MM, Ardakani SAM (2008) Nanotechnology 19:195709–195716

    Article  Google Scholar 

  17. Lethy KJ, Beena D, Mahadevan Pillai VP, Ganesan V (2008) J Appl Phys 104:033515-12

    Article  Google Scholar 

  18. Song XC, Zheng YF, Yang E, Wang Y (2007) Mater Lett 61:3904–3908

    Article  Google Scholar 

  19. Ha JH, Muralidharan P, Kim DK (2009) J Alloys Compd 475:446–451

    Article  Google Scholar 

  20. Rajagopal S, Nataraj ZD, Djaoued ZY, Robich ZJ, Khyzhun ZOY (2009) Nanoscale Res Lett 4:1335–1342

    Article  Google Scholar 

  21. Song X, Zhao Y, Zheng Y (2006) Mater Lett 60:3405–3408

    Article  Google Scholar 

  22. Gu Z, Li H, Zhai T, Yang W, Xia Y, Ma Y, Yao J (2007) J Solid State Chem 180:98–105

    Article  Google Scholar 

  23. Zhao ZG, Miyauchi M (2008) Angew Chem 120:7159–7163

    Article  Google Scholar 

  24. Vernardou D, Paterakis P, Drosos H, Spanakis E, Povey IM, Pemble ME, Koudoumas E, Katsarakis N (2011) Sol Energ Mat Sol C 95:2842–2847

    Article  Google Scholar 

  25. Spanakis E, Pervolaraki M, Giapintzakis J, Katsarakis N, Koudoumas E, Vernardou D (2013) Electrochim Acta 111:305–313

    Article  Google Scholar 

  26. Vernardou D, Apostolopoulou M, Louloudakis D, Spanakis E, Katsarakis N, Koudoumas E, McGrath J, Pemble ME (2014) J Alloy Compd 586:621–626

    Article  Google Scholar 

  27. Vernardou D, Drosos H, Spanakis E, Koudoumas E, Katsarakis N, Pemble ME (2012) Electrochim Acta 65:185–189

    Article  Google Scholar 

  28. Hu X, Ji Q, Hill JP, Ariga K (2011) Cryst Eng Comm 13:2237–2241

    Article  Google Scholar 

  29. Zhang H, Yao M, Bai L, Xiang W, Jin H, Li J, Yuan F (2013) Cryst Eng Comm 15:1432–1438

    Article  Google Scholar 

  30. Lu Z, Kanana SM, Tripp CP (2002) J Mater Chem 12:983–989

    Article  Google Scholar 

  31. Pecquenard B, Lecacheaux H, Livage L, Julien C (1998) J Solid State Chem 135:159–168

    Article  Google Scholar 

  32. Habazaki H, Hayashi Y, Konno H (2002) Electrochim Acta 47:4181–4188

    Article  Google Scholar 

  33. Cremonesi A, Djaoued Y, Bersani D, Lottici PP (2008) Thin Solid Films 516:4128–4132

    Article  Google Scholar 

  34. Iwu KO, Galeckas A, Rauwel P, Kuznetsov AY, Norby T (2012) J Solid State Chem 185:245–252

    Article  Google Scholar 

  35. Cao GZ (2004) Nanostructures and nanomaterials: synthesis, properties and applications. Imperial College Press, London

    Book  Google Scholar 

  36. Wang JM, Khoo E, Lee PS, Ma J (2008) J Phys Chem C 112:14306–14312

    Article  Google Scholar 

  37. Arnoldussen TC (1981) J Electrochem Soc 128:117–123

    Article  Google Scholar 

  38. Ng SH, Chew SY, Wang J, Wexler D, Tournayre Y, Konstantinov K, Liu HK (2007) J Power Sources 174:1032–1035

    Article  Google Scholar 

  39. Sahana MB, Sudakar C, Thapa C, Lawes G, Naik VM, Baird RJ, Auner GW, Naik R, Padmanabhan KR (2007) Mater Sci Eng B 143:42–50

    Article  Google Scholar 

  40. Pell WG, Conway BE (2001) J Power Sources 96:57–67

    Article  Google Scholar 

  41. Liao CC, Chen FR, Kai JJ (2007) Sol Energ Mat Sol C 91:1282–1288

    Article  Google Scholar 

  42. Deepa M, Singh DP, Shivaprasad SM, Agnihotry SA (2007) Curr Appl Phys 7:220–229

    Article  Google Scholar 

  43. Liao CC, Chen FR, Kai JJ (2007) Sol Energ Mat Sol C 91:1258–1266

    Article  Google Scholar 

  44. Jiao Z, Sun XW, Wang J, Ke L, Demir HV (2010) J Phys D Appl Phys 43:285501–285506

    Article  Google Scholar 

  45. Vernardou D, Louloudakis D, Spanakis E, Katsarakis N, Koudoumas E (2014) Electrochemical properties of vanadium oxide coatings grown by hydrothermal synthesis on FTO substrates. New J Chem. doi:10.1039/C3NJ00931A

    Google Scholar 

  46. Yan J, Khoo E, Sumboja A, Lee PS (2010) Nano 4:4247–4255

    Google Scholar 

  47. Chang KH, Hu CC, Huang CM, Liu YL, Chang CI (2011) J Power Sources 196:2387–2392

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Vernardou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christou, K., Louloudakis, D., Vernardou, D. et al. One-pot synthesis of WO3 structures at 95 °C using HCl. J Sol-Gel Sci Technol 73, 520–526 (2015). https://doi.org/10.1007/s10971-014-3459-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3459-5

Keywords

Navigation