Skip to main content
Log in

Non-vacuum Preparation of wse2 Thin Films via the Selenization of Hydrated Tungsten Oxide Prepared using Chemical Solution Methods

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

It is known that tungsten oxide may be reacted with selenium sources to form WSe2 but literature reports include processing steps that involve high temperatures, reducing atmospheres, and/or oxidative pre-treatments of tungsten oxide. In this work, we report a non-vacuum process for the fabrication of compositionally high quality WSe2 thin films via the selenization of tungsten oxide under milder conditions. Tungsten source materials were various hydrated WO3 and WO2.9 compounds that were prepared using chemical solution techniques. Resulting films were selenized using a two-stage heating profile (250 oC for 15 minutes and 550 oC for 30 minutes) under a static argon atmosphere. Effects of the starting tungsten oxide phase on WSe2 formation after single and double selenization cycles were investigated using Raman spectroscopy and X-ray diffraction (XRD). After two selenization cycles, hydrated WO3 was converted to (002)-oriented WSe2 that exhibits well-resolved peaks for E12g and A1g phonon modes. Only a single selenization cycle was required to convert amorphous WO2.9 to WSe2. All selenizations in this work were achieved in non-reducing atmospheres and at lower temperatures and shorter times than any non-laser-assisted processes reported for WO3-to-WSe2 conversions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.Wadia, A.P. Alivastos, and D.M. Kammen, Environ. Sci. Technol. 43, 2072 (2009).

    Article  CAS  Google Scholar 

  2. A. Jäger-Waldau, M. Ch. Lux-Steiner, and E. Bucher, Solid State Phen. 37–38, 479 (1994).

    Article  Google Scholar 

  3. A. Jäger-Waldau, and E. Bucher, Thin Solid Films 200, 157 (1991).

    Article  Google Scholar 

  4. M. Vogt, M. Ch. Lux-Steiner, Ρ. Dolatzoglou, and E. Bucher, presented at the 1988 Photovoltaic Solar Energy Conference, Florence, Italy (unpublished).

  5. Q. Ma, H. Kyureghian, J.D. Banninga, and N.J. Ianno, Mater. Res. Soc. Symp. Proc. 1670, San Francisco, CA, 2014, mrss14-1670-e01-02 doi:10.1557/opl.2014.739.

  6. J. Pouzet, J. C. Bernede, A. Khellil, H. Essaidi, S. Benhida, Thin Solid Films 208, 259 (1992).

    Article  Google Scholar 

  7. Y.-Z. Chen, H. Medina, T.-Y. Su, J.-G. Li, K.-Y. Cheng, P.-W. Chiu, and Y.-L. Chueh, ACS Nano 9, 4346 (2015)

    Article  CAS  Google Scholar 

  8. P.M. Campbell, A. Tarasov, C.A. Joiner, M.-Y. Tsai, G. Pavlidis, S. Graham, W.J. Ready, and E.M. Vogel, Nanoscale 8, 2268 (2006).

    Article  Google Scholar 

  9. J.-K. Huang, J. Pu, C.-L. Hsu, M.-H. Chiu, Z.-Y. Juang, Y.-H. Chang, W.-H. Chang, Y. Iwasa, T. Takenobu, and L.-J. Li, ACS Nano 8, 923 (2014).

    Article  CAS  Google Scholar 

  10. K. Xu, F. Wang, Z.Wang, X. Zhan, Q. Wang, Z. Cheng, M. Safdar, and J. He, ACS Nano 8, 8468 (2014).

    Article  CAS  Google Scholar 

  11. P. Browning, S. Eichfeld, K. Zhang, L. Hossain, Y.-C. Lin, K. Wang, N. Lu, A.R. Waite, A.A. Voevodin, M. Kim, and J. Robinson, 2D Mater. 2, 014003 (2015)

    Article  Google Scholar 

  12. J. Chen, W. Zhou, W. Tang, B. Tian, X. Zhao, H. Xu, Y. Liu, D. Geng, S.J.R. Tan, W. Fu, and K.P. Loh, Chem. Mater. 28, 7194 (2016).

    Article  CAS  Google Scholar 

  13. F. Ullah, Y. Sim, C.T. Le, M.-J. Seong, J.I. Jang, S.H. Rhim, B.C.T. Khac, K.-H. Chung, K. Park, Y. Lee, K. Kim, H.Y. Jeong, and Y.S. Kim, ACS Nano 11, 8822 (2017).

    Article  CAS  Google Scholar 

  14. Y. Lee, H. Jeong, Y.-S. Park, S. Han, J. Noh, and J.S. Lee, Appl. Surf. Sci. 432, 170 (2018).

    Article  CAS  Google Scholar 

  15. G. Salitra, G. Hodes, E. Klein, and R. Tenne, Thin Solid Films 245, 180 (1994).

    Article  CAS  Google Scholar 

  16. H. Kim, S.J. Yun, J.C. Park, M.H. Park, J.-H. Park, K.K. Kim, and Y.H. Lee, Small 11, 2192 (2015).

    Article  CAS  Google Scholar 

  17. M.Z. Najdoski and T. Todorovski, Mater. Chem. Phys. 104, 483 (2007).

    Article  CAS  Google Scholar 

  18. A.R. Markelonis, J.S. Wang, B. Ullrich, C.M. Wai, G.J. Brown, Appl. Nanosci. 5, 457 (2015).

    Article  CAS  Google Scholar 

  19. W. Cheng, E. Baudrin, B. Dunn, and J. Zink, J. Mater. Chem. 11, 92 (2001).

    Article  CAS  Google Scholar 

  20. R.R. Kharade, S.R. Mane, R.M. Mane, P.S. Patil, P.N. Bhosale, J Sol-Gel Sci. Technol. 56, 177 (2010).

    Article  CAS  Google Scholar 

  21. A.K. Nayak, S. Lee, Y.I. Choi, H.J. Yoon, Y. Sohn, and D. Pradhan, ACS Sustainable Chem. Eng. 5, 2741 (2017).

    Article  CAS  Google Scholar 

  22. JCPDS card no. 35-1001.

  23. A. Karuppasamy, Appl. Surf. Sci. 282, 77 (2013).

    Article  CAS  Google Scholar 

  24. Z.-F. Li, B.-S. Zhang, Z. Kristallographie 223, 191 (2008).

    CAS  Google Scholar 

  25. A.L. Patterson, Phys. Rev. 56, 978 (1939).

    Article  CAS  Google Scholar 

  26. O.J. Klejnot, Inorg. Chem. 4, 1668 (1965).

    Article  CAS  Google Scholar 

  27. P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordau, D.R.T. Zahn, S.M. de Vasconcellos, R. Bratschitsch, Optics Express 21, 4908 (2013).

    Article  CAS  Google Scholar 

  28. D.J. Late, S.N. Shirodkar, U.V. Waghmare, V.P. Dravid, and C.N.R. Rao, ChemPhysChem 15, 1592 (2014).

    Article  CAS  Google Scholar 

  29. W.J. Schutte, J.L. de Boer, F. Jellinek, J. Solid State Chem. 70, 207 (1987).

    Article  CAS  Google Scholar 

  30. J. Sloan, J.L. Hutchison, R. Tenne, Y. Feldman, T. Tsirlina, and M. Homyonfer, J. Solid State Chem. 144, 100 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Exstrom, C.L., Darveau, S.A., Falconer, M.E. et al. Non-vacuum Preparation of wse2 Thin Films via the Selenization of Hydrated Tungsten Oxide Prepared using Chemical Solution Methods. MRS Advances 3, 3281–3286 (2018). https://doi.org/10.1557/adv.2018.451

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2018.451

Navigation