Skip to main content
Log in

Synthesis and characterization of organic–inorganic hybrid materials prepared by sol–gel and containing CdS nanoparticles prepared by a colloidal method using poly(N-vinyl-2-pyrrolidone)

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This paper describes the synthesis and characterization of CdS nanoparticles (NPs) stabilized with poly(N-vinyl-2-pyrrolidone) and their further immobilization on a hybrid organic–inorganic matrix produced by the sol–gel process. The production of the hybrid matrix doped with CdS NPs was carried out in two steps. In the first step a precursor, designated diureasil precursor, was synthesized from the reaction between the terminal amine groups of α,ω-diamine-poly(oxyethylene-co-oxypropylene) and the isocyanate group of 3-isocyanatopropyltriethoxysilane. The next step involved the hydrolysis and condensation reactions of ethoxy groups attached to silicon, this step resulting in the formation of a crosslinked siliceous network linked through urea bonds to a poly(oxyethylene)/poly(oxypropylene) chain. The NPs were added to the diureasil precursor before the gelation process to allow a homogeneous dispersion of the NPs within the matrix. The developed method allowed the transfer of colloidal NPs to a solid matrix without the need of exchange the capping agents or the solvent. The materials were characterized by absorption, steady-state photoluminescence spectroscopy and by TEM. The results obtained showed the presence of CdS NPs with quantum size effect dispersed within the diureasil matrix. The obtained nanocomposites show a high transparency in the visible range accounting for the good dispersion of the NPs within the matrix. The TEM analysis confirmed that the NPs are uniformly dispersed within the diureasil matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Murray CB, Norris DJ, Bawendi MG (1993) J Am Chem Soc 115:8706

    Article  Google Scholar 

  2. Brus LE (1984) J Chem Phys 80:4403

    Article  Google Scholar 

  3. Santra S, Xu JS, Wang KM, Tan WH (2004) J Nanosci Nanotechnol 4:590

    Article  Google Scholar 

  4. Bae WK, Kwak J, Lim J, Lee D, Nam MK, Char K, Lee C, Lee S (2009) Nanotechnology 20:075202

    Article  Google Scholar 

  5. Wang CJ, Wehrenberg BL, Woo CY, Guyot-Sionnest P (2004) J Phys Chem B 108:9027

    Article  Google Scholar 

  6. Olson JD, Gray GP, Carter SA (2009) Sol Energy Mater Sol Cells 93:519

    Article  Google Scholar 

  7. Gonçalves LFFF, Silva CJR, Kanodarwala FK, Stride JA, Gomes MJM (2013) Opt Mater 36:186

    Article  Google Scholar 

  8. Boev VI, Silva CJR, Hungerford G, Gomes MJM (2004) J Sol–Gel Sci Technol 31:131

    Article  Google Scholar 

  9. Reiss P, Protiere M, Li L (2009) Small 5:154

    Article  Google Scholar 

  10. Zheng Y, Yang Z, Ying JY (2007) Adv Mater 19:1475

    Article  Google Scholar 

  11. Sundar VC, Eisler HJ, Bawendi MG (2002) Adv Mater 14:739

    Article  Google Scholar 

  12. Boev VI, Soloviev A, Silva CJR, Gomes MJM (2006) Solid State Sci 8:50

    Article  Google Scholar 

  13. Gonçalves LFFF, Silva CJR, Kanodarwala FK, Stride JA, Pereira MR, Gomes MJM (2013) J Lumin 144:203

    Article  Google Scholar 

  14. Motte L, Petit C, Boulanger L, Lixon P, Pileni MP (1992) Langmuir 8:1049

    Article  Google Scholar 

  15. Duong HD, Reddy CVG, Rhee JI, Vo-Dinh T (2011) Sens Actuators B 157:139

    Article  Google Scholar 

  16. Tetsuka H, Ebina T, Mizukami F (2008) Adv Mater 20:3039

    Article  Google Scholar 

  17. Liu SH, Qian XF, Yin J, Ma XD, Yuan JY, Zhu ZK (2003) J Phys Chem Solids 64:455

    Article  Google Scholar 

  18. He R, Qian X, Yin J, Xi H, Bian L, Zhu Z (2003) Colloids Surf A Physicochem Eng Asp 220:151

    Article  Google Scholar 

  19. Amma BS, Manzoor K, Ramakrishna K, Pattabi M (2008) Mater Chem Phys 112:789

    Article  Google Scholar 

  20. Jing C, Xu X, Zhang X, Liu Z, Chu J (2009) J Phys D Appl Phys 42:075402

    Article  Google Scholar 

  21. Verma P, Manoj GS, Pandey AC (2010) Phys B 405:1253

    Article  Google Scholar 

  22. Loy DA, Shea KJ (1995) Chem Rev 95:1431

    Article  Google Scholar 

  23. Mackenzie JD (1993) J Sol–gel Sci Technol 1:7

    Article  Google Scholar 

  24. Mishra MK, De G (2013) J Mater Chem C 1:4816

    Article  Google Scholar 

  25. Bermudez VZ, Carlos LD, Duarte MC, Silva MM, Silva CJR, Smith MJ, Assunção M, Alcácer LJ (1998) J Alloys Compd 275–277:21

    Article  Google Scholar 

  26. Ferreira RAS, Carlos LD, Gonçalves RR, Ribeiro SJL (2001) Chem Mater 13:2991

    Article  Google Scholar 

  27. Boev VI, Soloviev A, Silva CJR, Gomes MJM, Barber DJ (2007) J Solgel Sci Technol 41:223

    Article  Google Scholar 

  28. Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM (2007) Biomaterials 28:4717

    Article  Google Scholar 

  29. Katsikas L, Eychmüller A, Giersig M, Weller H (1990) Chem Phys Lett 172:201

    Article  Google Scholar 

  30. Yu WW, Qu L, Guo W, Peng X (2003) Chem Mater 15:2854

    Article  Google Scholar 

  31. Chestnoy N, Harris TD, Hull R, Brus LE (1986) J Phys Chem 90:3393

    Article  Google Scholar 

  32. Capoen B, Gacoin T, Nédélec JM, Turrel S, Bouazaoui M (2001) J Mater Sci 36:2565

    Article  Google Scholar 

  33. Zou BS, Little RB, Wang JP, El-Sayed MA (1999) Int J Quantum Chem 72:439

    Article  Google Scholar 

  34. Zhao XS, Schroeder J, Persans PD, Bilodeau TG (1991) Phys Rev B 43:12580

    Article  Google Scholar 

  35. Alivisatos AP (1996) J Phys Chem 100:13226

    Article  Google Scholar 

  36. Wang Y, Herron N (1991) J Phys Chem 95:525

    Article  Google Scholar 

  37. Peng XG, Schlamp MC, Kadavanich AV, Alivisatos AP (1997) J Am Chem Soc 119:7019

    Article  Google Scholar 

  38. Hosokawa H, Ogata T, Wada Y, Murakoshi K, Sakata T, Mori H, Yanagida S (1996) J Chem Soc Faraday Trans 22:4575

    Article  Google Scholar 

  39. Mehta SK, Kumar S, Chaudhary S, Bhasin KK (2010) Nanoscale 2:145

    Article  Google Scholar 

  40. Mishra MK, Mandal A, Saha J, De G (2013) Opt Mater 35:2604

    Article  Google Scholar 

  41. Tata M, Banerjee S, John VT, Waguespack Y, McPherson GL (1997) Colloid Surf A 127:39

    Article  Google Scholar 

  42. Carlos LD, Bermudez VZ, Ferreira RAS, Marques L, Assunção M (1999) Chem Mater 11:581

    Article  Google Scholar 

  43. Zezza F, Comparelli R, Striccoli M, Curri ML, Tommasi R, Agostiano A, Mónica MD (2003) Synth Met 139:597

    Article  Google Scholar 

  44. Qu L, Peng X (2002) J Am Chem Soc 124:2049

    Article  Google Scholar 

  45. Hou L, Chen L, Chen S (2009) Langmuir 25:2869

    Article  Google Scholar 

  46. Chaurea S, Chaurea NB, Pandey RK (2005) Phys E 28:439

    Article  Google Scholar 

  47. Neves MC, Martins MA, Soares-Santos PCR, Rauwel P, Ferreira RAS, Monteiro T, Carlos LD, Trindade T (2008) Nanotechnology 19:155601

    Article  Google Scholar 

  48. Wang YS, Sun P, Wang YH, Wang RZ, Zheng D, Li YL (2003) Appl Phys Lett 82:49

    Article  Google Scholar 

  49. Lakowicz JR, Gryczynski I, Gryczynski Z, Murphy C (1999) J Phys Chem B 103:7613

    Article  Google Scholar 

  50. Skaff H, Sill K, Emrick T (2004) J Am Chem Soc 126:11322

    Article  Google Scholar 

  51. Bailey RE, Nie S (2003) J Am Chem Soc 125:7100

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the Fundação para a Ciência e a Tecnologia (FCT). L. F. Gonçalves thanks the FCT for the PhD grant SFRH/BD/38262/2007. The authors gratefully acknowledge the financial support by Centro de Química [project F-COMP-01-0124-FEDER-022716 (ref. FCT Pest-C/Qui/UI0686/2011)-FEDER-COMPETE] and Centro de Física (Universidade do Minho). The authors would like to thank the Electron Microscope Unit of the Mark Wainwright Analytical Centre at The University of New South Wales, for scientific and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis F. F. F. Gonçalves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonçalves, L.F.F.F., Silva, C.J.R., Kanodarwala, F.K. et al. Synthesis and characterization of organic–inorganic hybrid materials prepared by sol–gel and containing CdS nanoparticles prepared by a colloidal method using poly(N-vinyl-2-pyrrolidone). J Sol-Gel Sci Technol 71, 69–78 (2014). https://doi.org/10.1007/s10971-014-3334-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3334-4

Keywords

Navigation