Skip to main content
Log in

Synthesis of Si-MCM-41 from ternary SiO2–CTAOH–H2O system via dry gel conversion route

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Steam assisted dry gel conversion method was employed for the synthesis of Si-MCM-41 from ternary SiO2:CTAOH:H2O systems wherein fumed silica was used as a source of silica. The influence of synthesis time, molar ratios of CTAOH/SiO2 in dry gel and the water content at the bottom of autoclave on the quality and formation of mesophases has been investigated. Powder XRD, N2 adsorption–desorption, TEM and hydrothermal stability test were the techniques used for sample characterization. Keeping molar ratio of CTAOH/SiO2 constant, shorter synthesis time, lower unit cell parameter and d spacing were observed when steam assisted dry gel conversion method was employed in place of conventional hydrothermal method. There exists an optimum lower limit for water content at the bottom of autoclave for reducing the synthesis period. Keeping synthesis temperature and CTAOH/SiO2 molar ratio fixed, Si-MCM-41 with improved hydrothermal stability was obtained by steam assisted dry gel conversion route.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kresge CT, Leonowicz M, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710. doi:10.1038/359710a0

    Article  ADS  CAS  Google Scholar 

  2. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTU, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) J Am Chem Soc 114:10834. doi:10.1021/ja00053a020

    Article  CAS  Google Scholar 

  3. Morey M, Davidson A, Eckert H, Stucky GD (1996) Chem Mater 8:486. doi:10.1021/cm950397j

    Article  CAS  Google Scholar 

  4. Xue P, Lu G, Guo Y, Wang Y, Guo Y (2004) J Mol Catal B Enzym 30:75. doi:10.1016/j.molcatb.2004.03.010

    Article  CAS  Google Scholar 

  5. Isabel IB, Africa M, Antonio L, Doadrio AL, Joaquin PP, Maria VR (2005) Eur J Pharm Sci 26:365. doi:10.1016/j.ejps.2005.06.009

    Article  Google Scholar 

  6. Ryoo R, Joo SH, Kruk M, Jaroniec M (2001) Adv Mater 13:677. doi:10.1002/1521-4095(200105)13:9<677::AID-ADMA677>3.0.CO;2-C

    Article  CAS  Google Scholar 

  7. Shen JL, Lee YC, Liu YL, Yu CC, Cheng PW, Cheng CF (2003) Micro Meso Mater 64:135. doi:10.1016/j.micromeso.2003.08.001

    Article  CAS  Google Scholar 

  8. Kruk M, Jaroniec M, Ryoo R, Joo SH (2000) J Phys Chem B 104:7960. doi:10.1021/jp000861u

    Article  CAS  Google Scholar 

  9. Gusev VY, Feng X, Bu Z, Haller GL, ÓBrien JA (1996) J Phys Chem 100:1985–1988

    Article  CAS  Google Scholar 

  10. Van Der Voort P, Baltes M, Vansant EF (2001) Catal Today 68:121. doi:10.1016/S0920-5861(01)00272-3

    Google Scholar 

  11. Kawi S, Shen SC (2000) Mater Lett 42:108. doi:10.1016/S0167-577X(99)00168-8

    Article  CAS  Google Scholar 

  12. Jun S, Kim JM, Ryoo R, Ahn YS, Han MK (2000) Micro Meso Mater 41:119. doi:10.1016/S1387-1811(00)00279-1

    Article  CAS  Google Scholar 

  13. Ryoo R, Kim JM (1995) J Chem Soc Chem Commun 711. doi:10.1039/c39950000711

  14. Cheng CF, Zhou W, Klinowski J (1996) Chem Phys Lett 263:247. doi:10.1016/S0009-2614(96)01159-1

    Article  ADS  CAS  Google Scholar 

  15. Sayari A, Lui P, Kruk M, Jaroniec M (1997) Chem Mater 9:2499. doi:10.1021/cm970128o

    Article  CAS  Google Scholar 

  16. Ryoo R, Jun S (1997) J Phys Chem B 101:317. doi:10.1021/jp962500d

    Article  CAS  Google Scholar 

  17. Makaya R (1999) Angew Chem Int Ed 38(19):2930

    Article  Google Scholar 

  18. Trong On D, Kaliaquine S (2002) Angew Chem Int Ed 41(6):1036

    Article  Google Scholar 

  19. Gaydhankar TR, Samuel V, Jha RK, Kumar R, Joshi PN (2007) Mater Res Bull 42:1473. doi:10.1016/j.materresbull.2006.11.006

    Article  CAS  Google Scholar 

  20. Gaydhankar TR, Taralkar US, Jha RK, Joshi PN, Kumar R (2005) Catal Commun 6:361. doi:10.1016/j.catcom.2005.02.011

    Article  CAS  Google Scholar 

  21. Liu X, Sun H, Yang Y (2008) J Colloid Interface Sci 319:377. doi:10.1016/j.jcis.2007.11.025

    Article  PubMed  CAS  Google Scholar 

  22. Park SE, Kim DS, Chang JS, Kim WY (1998) Catal Today 44(1–4):301. doi:10.1016/S0920-5861(98)00203-X

    Article  CAS  Google Scholar 

  23. Kruk M, Jaroniec M, Sayari A (1999) Micro Meso Mater 27:217. doi:10.1016/S1387-1811(98)00256-X

    Article  CAS  Google Scholar 

  24. Galacho C, Ribeiro Carrott MML, Carrott PJM (2008) Micro Meso Mater 108:283. doi:10.1016/j.micromeso.2007.04.010

    Article  CAS  Google Scholar 

  25. Yang J, Daehler A, Gee ML, Stevens GW, O’Connor AJ (2002) Stud Surf Sci Catal 141:221. doi:10.1016/S0167-2991(02)80545-6

    Article  CAS  Google Scholar 

  26. Cheng CF, Zhou W, Park DH, Klinowski J, Hargreaves M, Gladden LF (1997) J Chem Soc Faraday Trans 93:359. doi:10.1039/a605136g

    Article  CAS  Google Scholar 

  27. Candeias AE, Ribeiro Carrott MML, Carrott PJM, Schumacher K, Griin M, Unger KK (2002) Stud Surf Sci Catal 144:363. doi:10.1016/S0167-2991(02)80156-2

    Article  Google Scholar 

  28. Somani RS, KO CH, Han SS, Cho SH (2005) J Porous Mater 12:87. doi:10.1007/s10934-005-6765-z

    Article  CAS  Google Scholar 

  29. Xu W, Dong J, Li J, Li J, Wu F (1990) J Chem Soc Chem Commun 755. doi:10.1039/c39900000755

  30. Matsukata M, Ogura M, Osaki T, Hari Prasad Rao PR, Nomura M, Kikuchi E (1999) Top Catal 9:77. doi:10.1023/A:1019106421183

    Article  CAS  Google Scholar 

  31. Bhaumik A, Tatsumi T (2000) Micro Meso Mater 34:1. doi:10.1016/S1387-1811(99)00144-4

    Article  CAS  Google Scholar 

  32. Rao PRHP, Matsukata M (1996) J Chem Soc Chem Commun 1441

  33. Arnold A, Hunger M, Weitkamp J (2001) Chem Eng Technol 73:1588

    CAS  Google Scholar 

  34. Xia QH, Tatsumi T (2005) Mater Chem Phys 89:89. doi:10.1016/j.matchemphys.2004.08.034

    Article  CAS  Google Scholar 

  35. Wu P, Miyaji TT, Liu Y, He M, Tatsumi T (2005) Catal Today 99:233. doi:10.1016/j.cattod.2004.09.045

    Article  CAS  Google Scholar 

  36. Nishiyama N, Ueyama K, Matsukata M (1996) Micro Mater 7:299. doi:10.1016/S0927-6513(96)00053-3

    Article  CAS  Google Scholar 

  37. Xu M, Wang W, Weitkamp J, Hunger M (2005) Z Phys Chem 219:877. doi:10.1524/zpch.219.7.877.67089

    CAS  Google Scholar 

  38. Shen S, Chen F, Chow PS, Phanapavudhikul P, Zhu K, Tan RBH (2006) Micro Meso Mater 92:300. doi:10.1016/j.micromeso.2006.01.019

    Article  CAS  Google Scholar 

  39. Chen LY, Jaenicke S, Chuah GK (1997) Micro Mater 12:323. doi:10.1016/S0927-6513(97)00079-5

    Article  CAS  Google Scholar 

  40. Taralkar US, Kasture MW, Joshi PN (2008) J Phys Chem Solids 69:2075. doi:10.1016/j.jpcs.2008.03.004

    Article  ADS  CAS  Google Scholar 

  41. Igarashi N, Koyano KA, Tanaka Y, Nakata S, Hashimoto K, Tatsumi T (2003) Micro Meso Mater 59:43. doi:10.1016/S1387-1811(03)00286-5

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was carried out under CSIR Networking Task Force CMM0005.1 project. U.S.T. thanks Director, N.·C. L. Pune for permitting to work as a Guest worker.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Joshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taralkar, U.S., Niphadkar, P.S. & Joshi, P.N. Synthesis of Si-MCM-41 from ternary SiO2–CTAOH–H2O system via dry gel conversion route. J Sol-Gel Sci Technol 51, 244–250 (2009). https://doi.org/10.1007/s10971-009-1969-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-009-1969-3

Keywords

Navigation