Skip to main content
Log in

Highly efficient bio-sorption of trivalent f-elements using wild type Rhizopus arrhizus dead fungus

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Wild type Rhizopus arrhizus biomass was demonstrated as highly efficient bio-sorbent for trivalent f-elements. Both Am3+ and Eu3+ were found to follow the Fruendlich isotherm through chemi-sorption. The sorption for Am3+ was found be faster compared to Eu3+ while both proceeded via pseudo-second order reaction. EDTA was found to be effective strippant whereas up to 500 kGy, the bio-sorbent showed high radiolytic stability. Luminescence employed for probing the local environment of metal ion on sorption which revealed the presence of single adsorbed species with no inner sphere water molecules. The covalency of metal–ligand bond enhanced on complexation with the bio-sorbent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Madic C, Boullis B, Baron P, Testard F, Hudson MJ, Liljenzin J-O, Christiansen B, Ferrando M, Facchini A, Geist A, Modolo G, Espartero AG, De Mendoza J (2007) Futuristic back-end of the nuclear fuel cycle with the partitioning of minor actinides. J Alloys Compd 444–445:23–27

    Article  Google Scholar 

  2. Antony MP, Kumaresan R, Suneesh AS, Rajeswari S, Robertselvan B, Sukumaran V, Manivannan R, Syamala KV, Venkatesan KA, Srinivasan TG, Vasudeva Rao PR (2011) Development of a CMPO based extraction process for partitioning of minor actinides and demonstration with geneuine fast reactor fuel solution (155 GWd/Te). Radiochim Acta 99(4):207–215

    Article  CAS  Google Scholar 

  3. Serrano-Purroy D, Baron P, Christiansen B, Glatz J-P, Madic C, Malmbeck R, Modolo G (2005) First demonstration of a centrifugal solvent extraction process for minor actinides from a concentrated spent fuel solution. Sep Purif Technol 45(2):157–162

    Article  CAS  Google Scholar 

  4. Modolo G, Wilden A, Geist A, Magnusson D, Malmbeck R (2012) A review of the demonstration of innovative solvent extraction processes for the recovery of trivalent minor actinides from PUREX raffinate. Radiochim Acta 100(8–9):715–725

    Article  CAS  Google Scholar 

  5. Magnusson D, Christiansen B, Glatz J-P, Malmbeck R, Modolo G, Serrano-Purroy D, Sorel C (2009) Demonstration of a TODGA based extraction process for the partitioning of minor actinides from a PUREX raffinate. Solvent Extr Ion Exch 27:26–35

    Article  CAS  Google Scholar 

  6. Sengupta A, Ali Sk M, Shenoy KT (2016) Understanding the complexation of Eu3+ with TODGA, CMPO, TOPO and DMDBTDMA: Extraction, Luminescence and Theoretical investigation. Polyhedron 117:612–622

    Article  CAS  Google Scholar 

  7. Sengupta A, Murali MS, Thulasidas SK, Mohapatra PK (2014) A novel solvent system containing CMPO as the extractant in a diluent mixture containing n-dodecane and isodecanol for actinide partitioning runs. Hydrometallurgy 147–148:228–233

    Article  Google Scholar 

  8. Ansari SA, Pathak P, Mohapatra PK, Manchanda VK (2011) Aqueous partitioning of minor actinides by different processes. Sep Purif Rev 40:43–76

    Article  CAS  Google Scholar 

  9. Berthon L, Morel JM, Zorz N, Nicol C, Virelizier H, Madic C (2001) DIAMEX process for minor actinide partitioning: hydrolytic and radiolytic degradations of malonamide extractants. Sep Sci Technol 36(5–6):709–728

    Article  CAS  Google Scholar 

  10. Mathur JN, Murali MS, Nash KL (2001) Actinide partitioning–a review. Solvent Extr Ion Exch 19(3):357–390

    Article  CAS  Google Scholar 

  11. Singh M, Sengupta A, Murali MS, Kadam RM (2016) Comparative Study on the radiolytic stability of TBP, DHOA, Cyanex 923 and Cyanex 272 in ionic liquid and molecular diluent for the extraction of thorium. J Radioanal Nucl Chem 309(2):615–625

    CAS  Google Scholar 

  12. Singh M, Sengupta A, Murali MS, Kadam RM (2016) Selective separation of Uranium from nuclear waste solution by Bis(2,4,4-trimethyl) pentyl phosphinic acid in ionic liquid and molecular diluents: a comparative study. J Radioanal Nucl Chem 309(3):1199–1208

    Article  CAS  Google Scholar 

  13. Singh M, Sengupta A, Sk Jayabun, Ippili T (2017) Understanding the extraction mechanism, radiolytic stability and stripping behavior of thorium by ionic liquid based solvent systems: evidence of ‘ion-exchange’ and ‘solvation’ mechanism. J Radioanal Nucl Chem 311(1):195–208

    Article  CAS  Google Scholar 

  14. Sengupta A, Mohapatra PK, Iqbal M, Huskens J, Verboom W (2013) A diglycolamide-functionalized task specific ionic liquid (TSIL) for actinide extraction: solvent extraction, thermodynamics and radiolytic stability studies. Sep Purif Technol 118:264–270

    Article  CAS  Google Scholar 

  15. Fan QH, Tan XL, Li JX, Wang XK, Wu WS, Montavon G (2009) Sorption of Eu(III) on attapulgite studied by batch, XPS, and EXAFS techniques. Environ Sci Technol 43(15):5776–5782

    Article  CAS  Google Scholar 

  16. Kumar P, Sengupta A, Singha Deb AK, Dasgupta K, Ali Sk M (2016) Sorption behaviour of Pu4+ and PuO2 2+ on amido amine functionalized carbon nanotube: experimental and computational study. RSC Adv 6:107011–107020

    Article  CAS  Google Scholar 

  17. Sengupta A, Sk Jayabun, Boda A, Ali Sk M (2016) An amide functionalized task specific carbon nanotube for the sorption of tetra and hexa valent actinides: experimental and theoretical insight. RSC Adv 6:39553–39562

    Article  CAS  Google Scholar 

  18. Gupta NK, Sengupta A, Boda A, Adya VC, Ali Sk M (2016) Oxidation state selective sorption behavior of plutonium using N,N-dialkylamide functionalized carbon nanotubes: experimental study and DFT calculation. RSC Adv 6:78692–78701

    Article  CAS  Google Scholar 

  19. Philip L, Iyengar L, Venkobachar C (2000) Biosorption of U, La, Pr, Nd, Eu and Dy by Pseudomonas aeruginosa. J Indus Microbiol Biotechnol 25(1):1–7

    Article  CAS  Google Scholar 

  20. Gadd GM (2009) Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol 84(1):13–28

    Article  CAS  Google Scholar 

  21. Fomina M, Gadd GM (2014) Biosorption: current perspectives on concept, definition and application. Bioresour Technol 160:3–14

    Article  CAS  Google Scholar 

  22. Vijayaraghavan K, Sathishkumar M, Balasubramanian R (2010) Biosorption of lanthanum, cerium, europium, and ytterbium by a brown marine alga, Turbinaria Conoides. Ind Eng Chem Res 49(9):4405–4411

    Article  CAS  Google Scholar 

  23. Garcia SB, Nickerson WJ (1962) Isolation, composition and structure of cell walls of filamentous and yeast like forms of Mucor rouxii. Biochim Biophys Acta 58:102–119

    Article  Google Scholar 

  24. Crist RH, Oberhauser K, Shank N, Ngkuyen M (1981) Nature of bonding between metallic ions and algae cell walls. Environ Sci Technol 15(10):1212

    Article  CAS  Google Scholar 

  25. Beveridge TJ, Koval SF (1981) Binding of metals to cell envelopes of Escherichia coli K-12. Appl Environ Microbiol 42(2):325–335

    CAS  Google Scholar 

  26. Tsezos M, Keller DM (1983) Adsorption of radium 226 by biological origin absorbents. Biotechnol Bioeng 25(1):201–215

    Article  CAS  Google Scholar 

  27. Tsezos M, Volesky B (1981) Biosorption of uranium and thorium. Biotechnol Bioeng 23:583–604

    Article  CAS  Google Scholar 

  28. Horikoshi T, Nakajima A, Sakaguchi T (1981) Studies of the accumulation of heavy metal elements in biological systems. XIX. Accumulation of uranium by microorganisms. Eur J Appl Microbiol Biotechnol 12(2):90–96

    Article  CAS  Google Scholar 

  29. Weidemann DP, Tanner RD (1981) Modelling the rate of transfer of uranyl ions onto microbial cells. Enzyme Microb Technol 3:33–40

    Article  CAS  Google Scholar 

  30. Sengupta A, Keskar M, Sk Jayabun (2016) Sorption behaviour of metal ion on thorium tungstate synthesized by solid state route. J Radioanal Nucl Chem 310(3):979–989

    Article  CAS  Google Scholar 

  31. Castellan GW (1983) Physical chemistry, 3rd edn. Addison-Wesley, Reading

  32. Duff DG, Ross SMC, Huw VD (1988) Adsorption form solution: an experiment to illustrate the langmuir isotherm. J Chem Educ 65(9):815

    Article  CAS  Google Scholar 

  33. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156(1):2–10

    Article  CAS  Google Scholar 

  34. Dada AO, Olalekan AP, Olatunya AM, Dada O (2012) Langmuir, freundlich, temkin and Dubinin-Radushkevich isotherms studies of equilibrium sorption of Zn2? Unto phosphoric acid modified rice husk. J Appl Chem 3(1):38–45

    Google Scholar 

  35. Sengupta A, Sk Jayabun, Pius IC, Thulasidas SK (2016) Synthesis, characterization and application of metal oxides impregnated silica for the sorption of thorium. J Radioanal Nucl Chem 309:841–852

    CAS  Google Scholar 

  36. Li C, Wu L, Chen L, Yuan X, Cai Y, Feng W, Liu N, Ren Y, Sengupta A, Murali MS, Mohapatra PK, Tao G, Zeng H, Ding S, Yuan L (2016) Highly efficient extraction of actinides with pillar[5]arene-derived diglycolamides in ionic liquid via a unique mechanism involving competitive host-guest interactions. Dalton Trans 45:19299–19310

    Article  CAS  Google Scholar 

  37. Sengupta A, Murali MS (2016) Effect of phase modifiers TBP and iso-decanol on the extraction and complexation of Eu3+ with CMPO. Sep Sci Technol 51(13):2153–2163

    Article  CAS  Google Scholar 

  38. Sengupta A, Wu L, Feng W, Yuan L, Natarajan V (2015) Luminescence investigation on Eu—Pillar[5]arene-based diglycolamide (DGA) complexes: nature of the complex, Judd—Ofelt calculations and effect of ligand structure. J Lumin 158:356–364

    Article  CAS  Google Scholar 

  39. Sengupta A, Fang Y, Yuan X, Yuan L (2015) Probing of the local environment and calculation of J.O. parameters for Eu3+ CMPO functionalized pillararene complexes by time resolved fluorescence spectroscopy. J Lumin 166:187–194

    Article  CAS  Google Scholar 

  40. Sengupta A, Godbole SV, Mohapatra PK, Iqbal M, Huskens J, Verboom W (2014) Judd-Ofelt parameters of diglycolamide-functionalized calix[4]arene Eu3+ complexes in room temperature ionic liquid for structural analysis: effects of solvents and ligand stereochemistry. J Lumin 148:174–180

    Article  CAS  Google Scholar 

  41. Mohapatra PK, Sengupta A, Iqbal M, Huskens J, Verboom W (2013) Diglycolamide-functionalized calix[4]arenes showing unusual complexation of actinide ions in room temperature ionic liquids: role of ligand structure, radiolytic stability, emission spectroscopy, and thermodynamic studies. Inorg Chem 52(5):2533–2541

    Article  CAS  Google Scholar 

  42. Dhami PS, Kannan R, Naik PW, Gopalakrishnan V, Ramanujam A, Salvi NA, Chattopadhyay S (2002) Biosorption of americium using biomasses of various Rhizopu species. Biotechnol Lett 24(11):885–889

    Article  CAS  Google Scholar 

  43. Dutta S, Mohapatra PK, Ramnani SP, Sabharwal S, Das AK, Manchanda VK (2008) Use of chitosan derivatives as solid phase extractors for metal ions. Desalination 232(1–3):234–242

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author wish to acknowledge Dr. R. M. Kadam, Head, Actinide Spectroscopy Section and Dr. P. K. Pujari, Head, Radiochemistry Division for their constant support.

Funding

Funding was provided by Bhabha Atomic Research Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arijit Sengupta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 119 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kishor, P., Sengupta, A., Adya, V.C. et al. Highly efficient bio-sorption of trivalent f-elements using wild type Rhizopus arrhizus dead fungus. J Radioanal Nucl Chem 312, 395–403 (2017). https://doi.org/10.1007/s10967-017-5214-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5214-1

Keywords

Navigation