Skip to main content
Log in

Uranium-bearing francolites present in organic-rich limestones of NW Greece: a preliminary study using synchrotron radiation and fission track techniques

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Synchrotron radiation techniques (μ-XRF and μ-XANES) were applied to the study of organic-rich phosphatized limestones of NW Greece (Epirus). The results revealed uranium accumulation in areas of the material containing, among others, carbonate apatite (francolite) and organic matter. The UL 3-edge of μ-XANES spectra showed that uranium was present in tetravalent form. U-bearing francolite crystals were separated from the rock and characterized by Raman spectroscopy and microprobe. The analysis of the crystals also indicated the presence of sodium and sulfur. The uranium presence in the crystals was also visualized, after neutron irradiation and etching, by the observation of the fission tracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hughes JM, Rakovan J (2002) The crystal structure of apatite, Ca5(PO4)3(F,OH,Cl). In: Kohn M, Rakovan JF, Hughes JM (eds) Phosphates: geochemical, geobiological and materials importance. Reviews in mineralogy and geochemistry, vol 48. Mineralogical Society of America, Washington DC, pp 1–12

    Google Scholar 

  2. Hughes JM, Rakovan J (2015) Structurally robust, chemically diverse: apatite and apatite supergroup minerals. Elements 11(3):165–170

    Article  CAS  Google Scholar 

  3. Pan Y, Fleet ME (2002) Composition of apatite-group minerals: substitution mechanisms and controlling factors. In: Kohn M, Rakovan JF, Hughes JM (eds) Phosphates: geochemical, geobiological and materials importance. Reviews in mineralogy and geochemistry. Mineralogical Society of America, Washington DC, pp 13–49

    Google Scholar 

  4. Pasero M, Kampf AR, Ferraris C, Pekov IV, Rakovan J, White T (2010) Nomenclature of apatite supergroup minerals. Eur J Miner 22:163–179

    Article  CAS  Google Scholar 

  5. Rakovan J, Reeder RJ, Elzinga EJ, Cherniak D, Tait CD, Morris DE (2002) Characterization of U(VI) in the apatite structure by X-ray absorption spectroscopy. Environ Sci Technol 36(14):3114–3117

    Article  CAS  Google Scholar 

  6. Luo Y, Rakovan J, Elzinga E, Pan Y, Lupulescu MV, Hughes J (2011) Crystal chemistry of Th in fluorapatite. Am Mineral 96:23–33

    Article  CAS  Google Scholar 

  7. Luo Y, Rakovan J, Hughes J, Pan Y (2009) Site preference of U and Th in Cl, F. Sr apatites Am Miner 94:345–351

    Article  CAS  Google Scholar 

  8. Ewing RC, Wang LM (2002) Phosphates as nuclear waste forms. In: Kohn M, Rakovan JF, Hughes JM (eds) Phosphates: geochemical, geobiological and materials importance. Reviews in mineralogy and geochemistry, vol 48. Mineralogical Society of America, Washington D.C, pp 673–699

    Google Scholar 

  9. Borkiewicz O, Rakovan J, Cahill C (2010) Time resolved in situ studies of apatite formation pathways in aqueous solutions. Am Miner 95:1224–1236

    Article  CAS  Google Scholar 

  10. Kanai Y (2003) Characterization of U series nuclides in geological materials by selective leaching method. J Radioanal Nucl Chem 255(2):319–323

    Article  CAS  Google Scholar 

  11. Moore CR, Gasser M, Awwad N, Holt CK, Salas MF, Hasan A, Hasan AM, Zhao H, Sanchez AC (2005) Sorption of plutonium(VI) by hydroxyapatite. J Radioanal Nucl Chem 263(1):1588–2780

    Article  Google Scholar 

  12. Galamboš M, Suchánek P, Rosskopfová O (2012) Sorption of anthropogenic radionuclides on natural and synthetic inorganic sorbents. J Radioanal Nucl Chem 293(2):613–633

    Article  Google Scholar 

  13. Popa K (2013) Sorption of uranium on lead hydroxyapatite. J Radioanal Nucl Chem 298(3):1527–1532

    Article  CAS  Google Scholar 

  14. Hughes JM, Cameron M, Mariano AN (1991) Rare earth element ordering and structural variations in natural rare- earth bearing apatites. Am Miner 76:1165–1173

    CAS  Google Scholar 

  15. Glasmacher U, Zentilli M, Grist AM (1997) Apatite Fission Track thermochronology of Paleozoic sandstones and the Hill-intrusion at the northern part of the Linksrheinisches Schiefergebirge, Germany. In: Van den Haute P, De Corte F (eds) Advances in Fission-Track Geochronology. Kluwer Academic Publishers, Schiefergebirge, pp 151–172

    Google Scholar 

  16. Glasmacher UA, Mann U, Wagner GA (2002) Thermotectonic evolution of the Barrandian, Czech Republic, as revealed by apatite fission-track analysis. Tectonophysics 359:381–402

    Article  CAS  Google Scholar 

  17. Lisker F, Ventura B, Glasmacher UA (2009) Apatite thermochronology in modern geology. Spec Pub Geol Soc London 324:1–23

    Article  CAS  Google Scholar 

  18. Sandell EB, Hey MH, McConnell D (1939) The composition of francolite. Mineral Mag 25:395–401

    Article  CAS  Google Scholar 

  19. McConnell D (1970) Apatite: its crystal chemistry, mineralogy, utilization and geologic and biologic occurrences. In: Bentor YE (ed) Applied mineralogy, vol 5. Springer, New York, p 111

    Google Scholar 

  20. McArthur JM (1985) Francolite geochemistry compositional controls during formation, diagenesis, metamorphism and weathering. Geochim Cosmochim Acta 49:23–35

    Article  CAS  Google Scholar 

  21. Perdikatsis B (1991) X-ray powder diffraction study of francolite by the Rietveld method. Mater Sci Forum 79–82:809–814

    Article  Google Scholar 

  22. McClellan GH (1980) Mineralogy of carbonate-fluorapatite. J Geol Soc Lond 137:675–681

    Article  CAS  Google Scholar 

  23. McClellan GH, Van Kauwenbergh SJ (1990) Mineralogy of sedimentary apatites. In: Notholt AJG, Jarvis I (eds) Phosphorite research and development, vol 52. Geological Society Special Publication, London, pp 23–31

    Google Scholar 

  24. Binder G, Troll G (1989) Coupled anion substitution in natural carbon-bearing apatites. Contrib Miner Petrol 101(4):394–401

    Article  CAS  Google Scholar 

  25. Schuffert JD, Kastner M, Emanuelle G, Jahnke RA (1990) Carbonate-ion substitution in francolite: a new equation. Geochim Cosmochim Acta 54:2323–2328

    Article  CAS  Google Scholar 

  26. Baumer A, Ganteaume M, Klee W (1985) Determination of OH ions in hydroxyfluorapatite by infrared spectroscopy. Bull Miner 108:145–152

    CAS  Google Scholar 

  27. Ivanova TI, Frank-Kamenetskaya OV, Kol’tsov AB, Ugolkov VL (2001) Crystal structure of calcium-deficient carbonated hydroxyapatite. thermal decomposition. J Solid State Chem 160:340–349

    Article  CAS  Google Scholar 

  28. Fleet ME, Liu X (2004) Location of type B carbonate ion in type A-B carbonate apatite synthesized at high pressure. J Solid State Chem 177:3174–3182

    Article  CAS  Google Scholar 

  29. Fleet ME, Liu X (2003) Carbonate apatite type A synthesized at high pressure: new space group P3 and orientation of channel carbonate ion. J Solid State Chem 174:412–417

    Article  CAS  Google Scholar 

  30. Fleet ME, Liu X (2005) Local structure of channel ions in carbonate apatite. Biomaterials 26:7548–7554

    Article  CAS  Google Scholar 

  31. Fleet ME, Liu X (2008) Accommodation of the carbonate ion in fluoapatite synthesized at high pressure. Am Miner 93:1460–1469

    Article  CAS  Google Scholar 

  32. Petkova V, Yaneva V (2010) Thermal behavior and phase transformations of nanosized carbonate apatite (Syria). J Therm Anal Calorim 99:179–189

    Article  CAS  Google Scholar 

  33. Kostova V, Petrova NL, Petkova V (2013) The high energy milling effect on positional redistribution of CO3-ions in the structure of sedimentary apatite. Bul Chem Commun 45(4):601–606

    CAS  Google Scholar 

  34. Pasteris JD, Yoder CH, Wopenka B (2014) Molecular water in nominally unhydrated carbonated hydroxylapatite: the key to a better understanding of bone mineral. Am Miner 99:16–27

    Article  CAS  Google Scholar 

  35. Peroos S, Du Z, De Leeuw NH (2006) A computer modeling study of the uptake, structure and distribution of carbonate defects in hydroxyl-apatite. Biomaterials 27:2150–2161

    Article  CAS  Google Scholar 

  36. Goldenberg E, Wilt Z, Schermerhorn D, Pasteris JD, Yoder CH (2015) Structural effects on incorporated water in carbonated apatites. Am Miner 100:274–280

    Article  Google Scholar 

  37. Tzifas ITr, Godelitsas A, Magganas A, Androulakaki E, Eleftheriou G, Mertzimekis T, Perraki M (2014) Uranium-bearing phosphatized limestones of NW Greece. J Geochem Explor 143:62–73

    Article  CAS  Google Scholar 

  38. Tsikos H, Karakitsios V, Van Breugel Y, Walsworth-Bell B, Bombardiere L, Petrizzo MR, Sinninghe Damst JS, Schouten S, Erba E, Silva IP, Farrimond P, Tyson RV, Jenkyns HC (2004) Organic-carbon deposition in the cretaceous of the ionian basin, NW Greece: the paquier event (OAE 1b) revisited. Geol Mag 141:401–416

    Article  CAS  Google Scholar 

  39. Kafousia N, Karakitsios V, Mattioli E, Kenjo S, Jenkyns HC (2014) The toarcian oceanic anoxic event in the ionian zone, Greece. Palaeogeogr Palaeocl 393:135–145

    Article  Google Scholar 

  40. Robertson AHF, Clift PD, Degnan PJ, Jones G (1991) Palaeogeographic and palaeotectonic evolution of the eastern mediterranean neotethys. Palaeogeogr Palaeocl 87:289–343

    Article  Google Scholar 

  41. Key parameters of the SUL-X beamline. ANKA facility, Karlsruhe Institute of Technology, Karlsruhe. https://www.anka.kit.edu/1629.php

  42. Antonakos A, Liarokapis E, Leventouri T (2007) Micro-Raman and FT-IR studies of synthetic and natural apatites. Biomaterials 28:3043–3054

    Article  CAS  Google Scholar 

  43. Penel G, Leroy G, Bres E (1998) Micro Raman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites. Calcifi Tissue Int 63(6):475–481

    Article  CAS  Google Scholar 

  44. Suess E (1970) Interaction of organic compounds with calcium carbonate-I. Association phenom geochemical implications. Geochim Cosmochim Acta 34:157–168

    Article  CAS  Google Scholar 

  45. Suess E (1973) Interaction of organic compounds with calcium carbonate-II. Organo carbonate association in recent sediments. Geochim Cosmochim Acta 37:2435–2447

    Article  CAS  Google Scholar 

  46. Barbarand J, Hurford T, Carter A (2002) Variation in apatite fission-track length measurement: implications for thermal history modeling. Chem Geol 198:77–106

    Article  Google Scholar 

  47. Barbarand J, Wood Carter A, Hurford TI (2003) Compositional and structural control of fission-track annealing in apatite. Chem Geol 198:107–137

    Article  CAS  Google Scholar 

  48. Rakovan J, Hughes JM (2000) Strontium in the apatite structure: strontian fluorapatite and belovite-(Ce). Can Miner 38:839–845

    Article  CAS  Google Scholar 

  49. Soudry D, Ehrlich S, Yoffe O, Nathan Y (2002) Uranium oxidation state and related variations in geochemistry of phosphorites from the Negev (southern Israel). Chem Geol 189(3–4):213–230

    Article  CAS  Google Scholar 

  50. Altschuler ZS, Clarke RS, Young EJ (1958) Geochemistry of uranium in apatite and phosphorite. US Geol Surv Prof Pap 314(D):45–90

    Google Scholar 

  51. Baturin GN, Kochenov AV (2001) Uranium in phosphorites. Lithol Miner Resour 36(4):303–321

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was partly supported by a DAAD-(UNIBRAL: 56265621) and a BMBF-Grant (05K13VH1) provided to the author U.A. Glasmacher. Synchrotron radiation beams were provided by the ANKA facility within the frame of the ANS-114 research project. The assistance of Drs. R. Steininger and T. J. Mertzimekis as well as of the ANKA technical staff during the experiments is thankfully acknowledged. We also thank Prof. P. C. Hackspacher for the support provided to us. Finally, many thanks to the Laboratory Manager of the Research Group Thermochronology and Archaeometry, Mrs. Margit Brückner for her assistance for the fission track measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. T. Tzifas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tzifas, I.T., Glasmacher, U.A., Misaelides, P. et al. Uranium-bearing francolites present in organic-rich limestones of NW Greece: a preliminary study using synchrotron radiation and fission track techniques. J Radioanal Nucl Chem 311, 465–472 (2017). https://doi.org/10.1007/s10967-016-4973-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-4973-4

Keywords

Navigation