Skip to main content
Log in

Correlation between the spatial distribution of radon anomalies and fault activity in the northern margin of West Qinling Fault Zone, Central China

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The spatial variations of soil gas in the northern edge of West Qinling Fault were investigated based on the field measurement of radon concentration. Radon concentrations highlighted a decreasing gradient from the middle segment to NW and SE along the fault and the fault zone was divided into three segments. We observed that the measured radon data showed a moderate positive correlation with relative fault activity. The hazard segment area was marked according to the relationship between the spatial concentration anomaly values of soil-gas radon and the seismotectonic background.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baykara O, İnceöz M, Doğru M, Aksoy E, Külahci F (2009) Soil radon monitoring and anomalies in East Anatolian Fault System (Turkey). J Radioanal Nucl Chem 279:159–164

    Article  CAS  Google Scholar 

  2. Tansi C, Tallarico A, Iovine GGR, Gallo MF, Falcone G (2005) Interpretation of radon anomalies in seismotectonic and tectonic-gravitational settings: the southeastern Crati Graben (Northern Calabria, Italy). Tectonophysics 396:181–193

    Article  CAS  Google Scholar 

  3. Al-Bataina BA, Al-Tajb MM, Atallahc MY (2005) Relation between radon concentrations and morphotectonics of the Dead Sea transform in Wadi Araba. Radiat Meas 40:539–543

    Article  CAS  Google Scholar 

  4. Song XJ, Yao HM, Xiao F, Qin ZY, Sun BH, Zhan HM (2006) Coupling relation between the radon content in soil and the faults in Ninghe county. Tianjin. Geol Surv Res 29:179–184 (in Chinese)

    Google Scholar 

  5. Singh S, Sharma DK, Dhar S, Randhawa SS (2006) Geological significance of soil gas radon: a case study of Nurpurarea, district Kangra, Himalchal Pradesh, India. Radiat Meas 41:482–485

    Article  CAS  Google Scholar 

  6. Lombardi S, Voltattorni N (2010) Rn, He and CO2 soil gas geochemistry for the study of active and inactive faults. Appl Geochem 25:1206–1220

    Article  CAS  Google Scholar 

  7. Ichedef M, Sac MM, Harmanşah C, Taskopru C (2014) Two year evolution of radon emission and tectonic movements in Tuzla Fault, Seferihisar-İzmir. Appl Radiat Isot 86:102–108

    Article  CAS  Google Scholar 

  8. Ramola R (2010) Relation between spring water radon anomalies and seismic activity in Garhwal Himalaya. Acta Geophys 58:814–827

    Article  Google Scholar 

  9. Géli L, Henry P, Zitter T, Dupré S, Tryon M, Çağatay MN, Mercier de Lépinay B, Le Pichon X, Şengör AMC, Görür N, Natalin B, Uçarkuş G, Özeren S, Volker D, Gasperini L, Burnard P, Bourlange S, the Marnaut Scientific Party (2008) Gas emissions and active tectonics within the submerged section of the North Anatolian Fault zone in the Sea of Marmara. Earth Planet Sci Lett 274:34–39

  10. Ghosh D, Deb A, Sengupta R, Bera S, Sahoo SR, Haldar S, Patra KK (2011) Comparative study of seismic surveillance on radon in active and non-active tectonic zone of West Bengal, India. Radiat Meas 46:365–370

    Article  CAS  Google Scholar 

  11. Liu F, Zhang JS, Huang XN (2009) A GIS Research on the relationship between active faults and earthquakes in China North-south seismic belt and central orogenic system intersection zone. Chin Earthq 25:394–404 (in Chinese)

    Google Scholar 

  12. Horton BK, Dupont-Nivet G, Zhou J, Waanders GL, Butler RF, Wang J (2004) Mesozoic-Cenozoic evolution of the Xining-Minhe and Dangchang basins, northeastern Tibetan plateau: magnetostratigraphic and biostratigraphic results. J Geophys Res 109:1–15

    Google Scholar 

  13. Dupont-Nivet G, Horton BK, Butler RF, Wang J, Zhou J, Waanders GL (2004) Paleogene clockwise tectonic rotation of the Xining–Lanzhou region, Northeastern Tibetan plateau. J Geophys Res 109. doi:10.1029/2003JB002620

  14. Fang X, Garzione CN, Vander VR, Li J, Fan M (2003) Flexural subsidence by 29 Ma on the NE edge of Tibet from the magnetostratigraphy of Linxia basin, China. Earth Planet Sci Lett 210:545–560

    Article  CAS  Google Scholar 

  15. Yue L, Heller F, Qiu Z (2000) Tertiary magneto stratigraphy and paleoenvironment records in Lanzhou basin. Chin Sci Bull 45:1998–2003 (in Chinese)

    Google Scholar 

  16. Shen X, Tian Q, Ding G (2001) Late Cenozioc sequence in the Hejiakouzi region of NingXia and its significance. Earthq Res China 17:156–166 (in Chinese)

    Google Scholar 

  17. Jiang H, Ding Z, Xiong S (2007) Magnetostratigraphy of the Neogene Sikouzi section at Guyuan, Ningxia, China. Palaeoecology 243:223–234

    Article  Google Scholar 

  18. Hough B, Garzione CN, Wang ZC (2010) Stable isotope evidence for topographic growth and basin segmentation: implications for the evolution of the NE Tibetan plateau. Geol Soc Am Bull 123:168–185

    Article  Google Scholar 

  19. Zheng D, Zhang P, Wan J (2006) Rapid exhumation at 8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology: implications for growth of the northeastern Tibetan plateau margin. Earth Planet Sci Lett 248:183–193

    Article  Google Scholar 

  20. Molnar P (2005) Mio-pliocene growth of the Tibetan plateau and evolution of East Asian climate. Palaeontol Electron 8:1–23

    Google Scholar 

  21. Thompson JA, Burbank DW, Li T, Chen J, Bookhagen B (2015) Late Miocene northward propagation of the northeast Pamir thrust system, northwest China. Tectonics 34:510–534

    Article  Google Scholar 

  22. Lin X, Chen H, Wyrwoll KH, Cheng XG (2010) Commencing uplift of the Liupan Shan since 9.5 Ma: evidences from the Sikouzi section at its east side. J Asian Earth Sci 37:350–360

    Article  Google Scholar 

  23. Price JG, Rigby JG, Christensen L, Hess R, LaPointe DD, Rameli AR, Desilets M, Hopper RD, Kluesner T, Marshall S (1994) Radon in outdoor in Nevada. Health Phys 66:433–438

    Article  CAS  Google Scholar 

  24. King CY, King BS, Evans WC, Zhang W (1996) Spatial radon anomalies on active faults in California. Appl Geochem 11:497–510

    Article  CAS  Google Scholar 

  25. Guerra M, Lombardi S (2001) Soil-gas method for tracing neotectonic faults in clay basin: the Pisticci field (Southern Italy). Tectonophysics 339:511–522

    Article  CAS  Google Scholar 

  26. Fu CC, Yang TF, Walia V, Cheng CH (2005) Reconnaissance of soil gas composition over the buried fault and fracture zone in Southern Taiwan. Geochem J 39:427–439

    Article  CAS  Google Scholar 

  27. Walia V, Su TC, Fu CC, Yang TF (2005) Spatial variations of radon and helium concentrations in soil gas across Shan-Chaio fault, Northern Taiwan. Radiat Meas 40:513–516

    Article  CAS  Google Scholar 

  28. Sinclair AJ (1991) A fundamental approach to threshold estimation in exploration geochemistry, probability plots revisited. J Geochem Explor 41:1–22

    Article  CAS  Google Scholar 

  29. Wang X, Li Y, Du JG, Zhou XC (2014) Correlations between radon in soil gas and the activity of seismogenic faults in the Tangshan area, North China. Radiat Meas 60:8–14

    Article  CAS  Google Scholar 

  30. Zhou XC, Du JG, Wang CY, Cao ZQ, Li Y, Liu L (2007) Geochemical characteristics of radon and mercury in soil gas in Lhasa, Tibet, China. Environ Sci 28:659–676 (in Chinese)

    CAS  Google Scholar 

  31. Li Y, Du JG, Wang FK, Zhou XC, Pan XD, Wei RQ (2009) Geochemical characteristics of soil gas in Yanhuai basin, North China. Earthq Sci 22:93–100

    Article  Google Scholar 

  32. Zhou XC, Wang CY, Chai CZ, Si XY, Lei QY, Li Y, Xie C, Liu SC (2011) The geochemical characteristics of soil gas in the southeastern part of Haiyuan fault. Seismol Geol 33:123–132 (in Chinese)

    Google Scholar 

  33. Yao HM, Wang ZG (2009) Research on the relationship between the soil radon density and fault and geotherm at the foreland of Jixian mountain, Tianjin. Geol Survey Res 33:221–227 (in Chinese)

    Google Scholar 

  34. Ciotoli G, Lombardi S, Annunziatellis A (2007) Geostatistical analysis of soil gas data in a high seismic intermontane basin: Fucino Plain, central Italy. J Geophys Res 112(23):B05407

    Google Scholar 

  35. Kuo T, Su C, Chang C, Lin C, Cheng W, Liang H, Lewis C, Chiang C (2010) Application of recurrent radon precursors for forecasting large earthquakes (Mw > 6.0) near Antung, Taiwan. Radiat Meas 45:1049–1054

    Article  CAS  Google Scholar 

  36. King CY (1980) Episodic radon changes in subsurface soil gas along active faults and possible relation to earthquakes. J Geophys Res 85:3065–3078

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the basic R&D fund of the Institute of Earthquake Science, China Earthquake Administration (CEA) (Grant 2013IESLZ04), Spark Program of China Earthquake Administration (Grant XH15043) and natural science foundation of Gansu province (Grant 1308RJZA275).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Su, H., Zhang, H. et al. Correlation between the spatial distribution of radon anomalies and fault activity in the northern margin of West Qinling Fault Zone, Central China. J Radioanal Nucl Chem 308, 679–686 (2016). https://doi.org/10.1007/s10967-015-4504-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4504-8

Keywords

Navigation