Skip to main content
Log in

Correlations between soil gas and seismic activity in the Generalized Haiyuan Fault Zone, north-central China

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Radon and mercury concentrations were measured in 10 fault gas profiles in Generalized Haiyuan Fault. This paper aims to predetermine the potential seismic risk in different segments of the fault zone from the perspective of geochemistry. The background value and anomaly threshold were adopted and synthesized using the maximum value method and average method to calculate concentration intensity values of radon and mercury. Fault soil gas mercury and radon concentrations show a decreasing gradient from NW to SE indicating evident segmentation. Higher values are mostly distributed in the Maomao Mountain–Tiger Mountain fault and Jingtai area. Combined with the seismotectonic background of historical and recent earthquakes and the spatial distribution characteristics of b-values, the fault soil gas concentration intensity shows a close correlation with earthquake activity within the fault zone. Concentrations of fault gas are higher and the b-value lower in areas of strong seismic activity, and regions with weak seismic activity correspond to lower fault gas concentrations and higher b-values. It is thus considered that the Jingtai area may be more dangerous than the other areas. This paper could provide vital background information for earthquake prediction in the Generalized Haiyuan Fault Zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amitrano D (2003) Brittle-ductile transition and associated seismicity: experimental and numerical studies and relationship with the b value. J Geophy Res Atmos 108(B1):233–236. doi:10.1029/2001JB000680

    Article  Google Scholar 

  • Baykara O, İnceöz M, Doğru M, Aksoy E, Külahcı F (2009) Soil radon monitoring and anomalies in East Anatolian Fault System(Turkey). J Radioanal Nucl Chem 279(1):159–164

    Article  Google Scholar 

  • Ciotoli G, Guerra M, Lombardi S, Vittori E (1998) Soil gas survey for tracing seismogenic faults: a case study in the Fucino Basin, central Italy. J Geophys Res Solid Earth 103(B10):23781–23794. doi:10.1029/98JB01553

    Article  Google Scholar 

  • Ciotoli G, Etiope G, Guerra M, Lombardi S (1999) The detection of concealed faults in the Ofanto Basin using the correlation between soil-gas fracture surveys. Tectonophysics 301(3):321–332. doi:10.1016/S0040-1951(98)00220-0

    Article  Google Scholar 

  • Ciotoli G, Lombardi S, Annunziatellis A (2007) Geostatistical analysis of soil gas data in a high seismic intermontane basin: Fucino Plain, central Italy. J Geophys Res Atmos 112(112):2637–2655. doi:10.1029/2005JB004044

    Google Scholar 

  • Du YJ, Ma J, Li JG (1989) Interaction and stability of en echelon crack. Acta Geophys Sin 32(suppl 1):218–231 (in Chinese)

    Google Scholar 

  • Duvall AR, Clark MK (2010) Dissipation of fast strike-slip faulting within and beyond northeastern Tibet. Transl World Seismol 38(3):223–226

    Google Scholar 

  • Einarsson P, Theodorsson P, Hjartardottir AR, Guojonsson GI (2008) Radon changes associated with the earthquake sequence in June 2000 in the South Iceland seismic zone. Pure Appl Geophy 165(1):63–74

    Article  Google Scholar 

  • Fu CC, Yang TF, Du J, Walia V, Chen YG et al (2008) Variations of helium and radon concentrations in soil gases from an active fault zone in southern Taiwan. Radiat Meas 43(1):S348–S352. doi:10.1016/j.radmeas.2008.03.035

    Article  Google Scholar 

  • Hauksson E, Goddard JG (1981) Radon earthquake precursor studies in Iceland. J Geophys Res Atmos 86(B8):7037–7054. doi:10.1029/JB086iB08p07037

    Article  Google Scholar 

  • He WG, Yuan DY, Liu BC (1994) Study on the segmentation of Laohushan Fault Zone. Northwest Seismol J 16:66–72 (in Chinese)

    Google Scholar 

  • Igarashi G, Wakita H (1990) Groundwater radon anomalies associated with earthquakes. Tectonophysics 180(2–4):237–254

    Article  Google Scholar 

  • Igarashi G, Saeki S, Takahata N, Sumikawa K, Tasaka S (1995) Ground-water radon anomaly before the kobe earthquake in Japan. Science 269(5220):60–61

    Article  Google Scholar 

  • King CY, King BS, Evans WC, Zhang W (1996) Spatial radon anomalies on active faults in California. Appl Geochem 11(4):497–510

    Article  Google Scholar 

  • Kumar A, Walia V, Singh S, Bajwa BS, Mahajan S (2012) Earthquake precursory studies at Amritsar Punjab, India using radon measurement techniques. Int J Phys Sci 7(42):5669–5677

    Google Scholar 

  • Li CH, Su HJ, Zhang H, Zhou HL (2016) Correlation between the spatial distribution of radon anomalies and fault activity in the northern margin of West Qinling Fault Zone, Central China. J Radioanal Nucl Chem 308(2):679–686. doi:10.1007/s10967-015-4504-8

    Article  Google Scholar 

  • Liu BC, Lu TY, Yuan DY (1994a) Study on the division and correlation of quaternary stratain in Laohushan active fault area, JingTai county, GanSu. Northwest Seismol J 16:54–62 (in Chinese)

    Google Scholar 

  • Liu XF, Liu BC, Lu TY (1994b) The research on the Laohushan active fault.South China. J Seismol 14:10–16 (in Chinese)

    Google Scholar 

  • Liu J, Xu XW, Li YF (2007) On the completeness of paleoseismic records of strike-slip fault:an example from the Laohushan segment of the Haiyuan fault in Gansu, China, with a discussion of several problems in the paleoearthquake study. Geol Bull China 26:650–660 (in Chinese)

    Google Scholar 

  • Lombardi S, Voltattorni N (2010) Rn, He and CO2 soil gas geochemistry for the study of active and inactive faults. Appl Geochem 25(8):1206–1220

    Article  Google Scholar 

  • Ma J, Guo YS (2014) Accelerated synergism prior to fault instability:evidnce from laboratory experiments and an earthquake case. Seismol Geol 36:547–561 (in Chinese)

    Google Scholar 

  • Ma J, Sherman SI, Guo YS (2012) Identification of meta-instable stess state based on experimental study of evolution of the temperature field during stick-slip instability on a 5° bending fault. Sci China (Ser D) 55:869–881 (in Chinese)

    Google Scholar 

  • Phuong NK, Harijoko A, Itoi R, Unoki Y et al (2012) Water geochemistry and soil gas survey at Ungaran geothermal field, central Java, Indonesia. J Volcanol Geotherm Res s 229–230(6):23–33. doi:10.1016/j.jvolgeores.2012.04.004

    Article  Google Scholar 

  • Pizzino L, Burrato P, Quattrocchi F, Valensise G (2004) Geochemical signatures of large active faults:the example of the February 5th 1783, Calabrian Earthquake (Southern Italy). J Seismol 8(3):363–380

    Article  Google Scholar 

  • Richon P, Sabroux JC, Halbwachs M, Vandemeulebrouck J, Poussielgue N, Tabbagh J, Punongbayan R (2003) Radon anomaly in the soil of Taal volcano, the Philippines: a likely precursor of the M 7.1 Mindoro earthquake (1994). Geophys Res Lett 30(9):319–338

    Article  Google Scholar 

  • Scholz CH (1968) The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bull Seismol Soc Am 58:399–415

    Google Scholar 

  • Scholz CH, Sykes LR, Aggarwal YP (1973) Earthquake prediction:a physical basis. Science 181(4102):803–810. doi:10.1126/science.181.4102.803

    Article  Google Scholar 

  • Schorlemmer D, Wiemer S, Wyss M (2005) Variations in earthquake-size distribution across different stress regimes. Nature 437(7058):539–542

    Article  Google Scholar 

  • Segovia N, Seidel JL, Monnin M (1987) Variations of radon in soils induced by external factors. J Radioanal Nucl Chem 119(3):199–209

    Article  Google Scholar 

  • Shi YL, Zhang BA, Wang XB (1990) The fault gases of large fault on the northern fringe of Qinling mountain and its earthquake risk. Northwest Seismol J 12:22–26 (in Chinese)

    Google Scholar 

  • Singh M, Kumar M, Jain RK, Chatrath RP (1999) Radon in ground water related to seismic events. Radiat Meas 30(4):465–469

    Article  Google Scholar 

  • Su HJ, Zhang H, Li CH, Zhou HL (2013) Geochemical features of fault gas on northern margin fault of Xiqinling and its seismic hazard analysis. China Earthq Eng J 35(3):671–676 (in Chinese)

    Google Scholar 

  • Tarakçı M, Harmanşah C, Saç MM, İçhedef M (2014) Investigation of the relationships between seismic activities and radon level in Western Turkey. App Radiat Isotopes 83(1):12–17

    Article  Google Scholar 

  • Teng Ta-Liang (1980) Some recent studies on ground water radon content as an earthquake precursor. J Geophys Res Atmos 85(B6):3089–3099

    Article  Google Scholar 

  • Toutain JP, Baubron JC (1999) Gas geochemistry and seismotectonics: a review. Tectonophysics 304(1):1–27. doi:10.1016/S0040-1951(98)00295-9

    Article  Google Scholar 

  • Virk HS, Sharma VWAK (2013) Radon precursory signal of Chamba earthquake. Currentence 69(5):452–454

    Google Scholar 

  • Virk HS, Singh B (1994) Radon recording of Uttarkashi earthquake. Geophys Res Lett 21:737–740

    Article  Google Scholar 

  • Virk HS, Walia V (2001) A critical analysis of radon emanometry data recorded at Palampur and Dalhousie for earthquake prediction studies in N-W Himalaya. Humanika 34:243–256 (Spl.Vol.1&2)

    Google Scholar 

  • Virk HS, Walia V, Sharma AK (1995) Radon precursory signal of Chamba earthquake. Currentence 69:452–454

    Google Scholar 

  • Virk HS, Walia V, Kumar N (2001) Helium/radon precursory anomalies of Chamoli earthquake, Garhwal Himalaya, India. J Geodyn 31(2):201–210

    Article  Google Scholar 

  • Walia V, Virk HS, Bajwa BS, Sharma N (2003) Relationships between radon anomalies and seismic parameters in N-W Himalaya, India. Radiat Meas 36(1):393–396

    Article  Google Scholar 

  • Walia V, Virk HS, Yang TF, Mahajan S, Walia M, Bajwa BS et al (2005a) Earthquake prediction studies using radon as a precursor in N-w Himalayas, India: a case study. Terr Atmos Ocean Sci 16(4):775–804

    Google Scholar 

  • Walia V, Su TC, Fu CC, Yang TF (2005b) Spatial variations of radon and helium concentration in soil gas across Shan-Chiao fault, Northern Taiwan. Radiat Meas 40:513–516

    Article  Google Scholar 

  • Walia V, Virk HS, Bajwa BS (2006) Radon precursory signals for some earthquakes of magnitude >5 occurred in N-W Himalaya. Pure appl Geophys 163(4):711–721

    Article  Google Scholar 

  • Walia V, Mahajan S, Kumar A, Singh S, Bajwa BS, Dhar S, Yang TF (2008) Fault delineation study using soilegas method in the Dharamsala area, NW Hima-layas, India. Radiat Meas 43:S337–S342

    Article  Google Scholar 

  • Walia V, Yang TT, Lin SJ, Kumar A, Fu CC, Chiu JM, Chang HH, Wen KL, Chen CH (2013a) Temporal variation of soil gas compositions for earthquake surveillance in Taiwan. Radiat Meas 50:154–159

    Article  Google Scholar 

  • Walia V, Yang TT, Lin SJ, Kumar A, Fu CC, Chiu JM, Chang HH, Wen KL, Chen CH (2013b) Temporal variation of soil gas compositions for earthquake surveillance in Taiwan. Radiat Meas 50:154–159

    Article  Google Scholar 

  • Wang C, Li X, Wei B (1991) Applications of measurement of fracture gases in seismological sciences (in Chinese). Seismol Press Beijing 11:497–510

    Google Scholar 

  • Wang X, Li Y, Du JG, Zhou XC (2013) Correlations between radon in soil gas and the activity of seismogenic faults in the Tangshan area, North China. Radiat Meas 60:8–14

    Article  Google Scholar 

  • Wiemer S, Schorlemmer DALM (2007) An asperity-based likelihood model for California. Seismol Res Lett 8:134–140

    Article  Google Scholar 

  • Wiemer S, Wyss M (2000) Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the Western US And Japan. Bull Seismol Soc Am 90(4):859–869

    Article  Google Scholar 

  • Ye Q, Singh RP, He A, Ji S, Liu C (2015) Characteristic behavior of water radon associated with Wenchuan and Lushan earthquakes along Longmenshan fault. Radiat Meas 76:44–53. doi:10.1016/j.radmeas.2015.04.001

    Article  Google Scholar 

  • Yuan DY, Liu BC, Lu TY (1996) The cumulative slip deficit of displacements and significance of segmentation along the Maomaoshan Fault Zone. Northwest Seismol J 18:59–67 (in Chinese)

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to anonymous reviewers. This work is supported by the basic R&D fund of the Institute of Earthquake Science, China Earthquake Administration (CEA) (Grant 2013IESLZ04) and Spark Program of China Earthquake Administration (Grant XH15043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hejun Su.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Su, H., Zhang, H. et al. Correlations between soil gas and seismic activity in the Generalized Haiyuan Fault Zone, north-central China. Nat Hazards 85, 763–776 (2017). https://doi.org/10.1007/s11069-016-2603-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-016-2603-7

Keywords

Navigation