Skip to main content
Log in

Comparison sorption properties of Eu(III) on titanate nanotubes and rutile studied by batch technique

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The titanate nanotubes and rutile are compared to understand the interaction of titanium oxides with Eu(III) ions. The sorption of Eu(III) on solid particle surfaces is dominated by surface properties and crystal structures of solid particles. The uptake of Eu(III) on titanium oxide surfaces occurs quickly at the initial contact time and then takes place on the less active sites and diffusion into the micropore sites of solid particles with increasing contact time. The results are important to evaluate the interaction of Eu(III) at solid-water interface and to understand the physicochemical behavior of Eu(III) in the natural environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tan XL, Fang M, Wang XK (2010) Sorption speciation of lanthanides/actinides on minerals by TRLFS, EXAFS and DFT study: a review. Molecules 15:8431–8468

    Article  CAS  Google Scholar 

  2. Tan XL, Ren XM, Chen CL, Wang XK (2014) Analytical approaches to the speciation of lanthanides on solid-water interfaces. TrAC-Trend Anal Chem 61:107–132

    Article  CAS  Google Scholar 

  3. Yang S, Sheng G, Tan X, Hu J, Du J, Montavon G, Wang X (2011) Determination of Ni(II) sorption mechanisms on mordenite surfaces: a combined macroscopic and microscopic approach. Geochim Cosmochim Acta 75:6520–6534

    Article  CAS  Google Scholar 

  4. Hu R, Shao D, Wang X (2014) Graphene oxide/polypyrrole composites for highly selective enrichment of U(VI) from aqueous solutions. Polym Chem 5:6207–6215

    Article  CAS  Google Scholar 

  5. Rabung Th, Pierret MC, Bauer A, Geckeis H, Bradbury MH, Baeyens B (2005) Sorption of Eu(III)/Cm(III) on Ca-montmorillonite and Na-illite. Part 1: batch sorption and time-resolved laser fluorescence spectroscopy experiments. Goechim Cosmochim Acta 69:5393–5402

    Article  CAS  Google Scholar 

  6. Tan X, Wang X, Geckeis H, Rabung T (2008) Sorption of Eu(III) on humic acid or fulvic acid bound to alumina studied by SEM-EDS, XPS, TRLFS and batch techniques. Environ Sci Technol 42:6532–6537

    Article  CAS  Google Scholar 

  7. Fan Q, Tan X, Li J, Wang X, Wu W, Montavon G (2009) Sorption of Eu(III) on attapulgite studied by batch, XPS and EXAFS techniques. Environ Sci Technol 43:5776–5782

    Article  CAS  Google Scholar 

  8. Hu J, Xie Z, He B, Sheng G, Chen C, Li J, Chen Y, Wang X (2010) Sorption of Eu(III) on GMZ bentonite in the absence/presence of humic acid studied by batch and XAFS techniques. Sci China B: Chem 53:1420–1428

    Article  CAS  Google Scholar 

  9. Yang S, Zong P, Ren X, Wang Q, Wang X (2012) Rapid and high-efficient preconcentration of Eu(III) by core-shell structured humic acid@Fe3O4 magnetic nanoparticles. ACS Appl Mater interfaces 4:6891–6900

    Article  CAS  Google Scholar 

  10. Yang S, Sheng G, Montavon G, Guo Z, Tan X, Grambow B, Wang X (2013) Geochim Cosmochim Acta 121:84

    Article  CAS  Google Scholar 

  11. Rabung Th, Geckeis H, Kim J, Beck HP (1998) The influence of anionic ligands on the sorption behavior of Eu(III) on natural hematite. Radiochim Acta 82:243–248

    Article  CAS  Google Scholar 

  12. Sheng G, Yang S, Li Y, Gao X, Huang Y, Hu J, Wang X (2014) Retention mechanisms and microstructure of Eu(III) on manganese dioxide studied by batch and high resolution EXAFS technique. Radiochim Acta 102:155–167

    Article  CAS  Google Scholar 

  13. Tan XL, Fan QH, Wang XK, Grambow B (2009) Eu(III) sorption to TiO2 (Anatase and Rutile): batch, XPS, and EXAFS study. Environ Sci Technol 43:3115–3121

    Article  CAS  Google Scholar 

  14. Ren XM, Yang ST, Tan XL, Chen CL, Wang XK (2012) Investigation of radionuclide 60Co(II) binding to TiO2 by batch technique, surface complexation model and DFT calculations. Sci China Chem 55:1752–1759

    Article  CAS  Google Scholar 

  15. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1999) Titania nanotubes prepared by chemical processing. Adv Mater 11:1307–1311

    Article  CAS  Google Scholar 

  16. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1998) Formation of titanium oxide nanotube. Langmuir 14:3160–3163

    Article  CAS  Google Scholar 

  17. Chen YC, Lo SL, Kuo J (2010) Pb(II) adsorption capacity and behavior of titanate nanotubes made by microwave hydrothermal method. Colloid Surf A 361:126–131

    Article  CAS  Google Scholar 

  18. Liu SS, Lee CK, Chen HC, Wang CC, Juang LC (2009) Application of titanate nanotubes for Cu(II) ions adsorptive removal from aqueous solution. Chem Eng J 147:188–193

    Article  CAS  Google Scholar 

  19. Sheng G, Yang S, Zhao D, Sheng J, Wang X (2012) Adsorption of Eu(III) on titanate nanotubes studied by a combination of batch and EXAFS technique. Sci China Chem 55:182–194

    Article  CAS  Google Scholar 

  20. Suetake J, Nosaka AY, Hodouchi K, Matsubara H, Nosaka Y (2008) Characteristics of titanate nanotube and the states of the confined sodium ions. J Phys Chem C 112:18474–18482

    Article  CAS  Google Scholar 

  21. Rodrigues CM, Ferreira OP, Alves OL (2010) Interaction of sodium titanate nanotubes with organic acids and base: chemical, structural and morphological stabilities. J Braz Chem Soc 21:1341–1348

    Article  CAS  Google Scholar 

  22. Lee B, Lu D, Kondo JN, Domen K (2002) Three-dimensionally ordered mesoporous niobium oxide. J Am Chem Soc 124:11256–11257

    Article  CAS  Google Scholar 

  23. Zhang SW, Niu HH, Lan Y, Cheng C, Xu JZ, Wang XK (2011) Synthesis of TiO2 nanoparticles on plasma treated carbon nanotubes and its application in photoanode of dye-sensitized solar cells. J Phys Chem C 115:22025–22034

    Article  CAS  Google Scholar 

  24. Sheng G, Yang S, Sheng J, Hu J, Tan X, Wang X (2011) Macroscopic and microscopic investigation of Ni(II) sequestration on diatomite by batch, XPS and EXAFS techniques. Environ Sci Technol 45:7718–7726

    Article  CAS  Google Scholar 

  25. Sun Y, Li J, Wang X (2014) The retention of uranium and europium onto sepiolite investigated by macroscopic, spectroscopic and modeling techniques. Geochim Cosmochim Acta 140:621–643

    Article  CAS  Google Scholar 

  26. Lee S, Anderson PR, Bunker GB, Karanfil C (2004) EXAFS study of Zn sorption mechanisms on montmorillonite. Environ Sci Technol 38:5426–5432

    Article  CAS  Google Scholar 

  27. Kumar S, Kasar SU, Bajpai RK, Kaushik CP, Guin R, Das SK, Tomar BS (2014) Kinetics of Pu(IV) sorption by smectite-rich natural clay. J Radioanal Nucl Chem 300:45–49

    Article  CAS  Google Scholar 

  28. Chen C, Wang X, Nagatsu M (2009) Europium adsorption on multiwall carbon nanotube/iron oxide magnetic composite in the presence of polyacrylic acid. Environ Sci Technol 43:2362–2367

    Article  CAS  Google Scholar 

  29. Sun Y, Wang Q, Chen C, Tan X, Wang X (2012) Interaction between Eu(III) and graphene oxide nanosheets investigated by batch and extended X-ray absorption fine structure spectroscopy and by modeling techniques. Environ Sci Technol 46:6020–6027

    Article  CAS  Google Scholar 

  30. Sun Y, Shao D, Chen C, Yang S, Wang X (2013) Highly efficient enrichment of radionuclides on graphene oxide supported polyaniline. Environ Sci Technol 47:9904–9910

    Article  CAS  Google Scholar 

  31. Yang ST, Zong PF, Sheng GD, Ren XM, Huang YY, Wang XK (2014) New insight into Eu(III) sorption mechanism at alumina/water interface by batch technique and EXAFS analysis. Radiochim Acta 102:143–153

    Article  CAS  Google Scholar 

  32. Sun Y, Chen C, Tan X, Shao D, Li J, Zhao G, Yang S, Wang Q, Wang X (2012) Enhanced adsorption of Eu(III) on mesoporous Al2O3/expanded graphite composites investigated by macroscopic and microscopic techniques. Dalton Trans 41:13388–13394

    Article  CAS  Google Scholar 

  33. Lu S, Xu J, Zhang C, Niu Z (2011) Adsorption and desorption of radionuclide europium(III) on multiwalled carbon nanotubes studied by batch techniques. J Radioanal Nucl Chem 287:893–898

    Article  CAS  Google Scholar 

  34. Lu SS, Chen L, Dong YH, Chen YX (2011) Adsorption of Eu(III) on iron oxide/multiwalled carbon nanotube magnetic composites. J Radioanal Nucl Chem 288:587–593

    Article  CAS  Google Scholar 

  35. Wang M, Xie H, Tan L, Qiu J, Tao X, Wu C (2012) Uptake properties of Eu(III) on Na-attapulgite as a function of pH, ionic strength and temperature. J Radioanal Nucl Chem 292:763–770

    Article  CAS  Google Scholar 

  36. Shao D, Jiang Z, Wang X, Li J, Meng Y (2009) Plasma induced grafting carboxymethyl cellulose on multiwalled carbon nanotubes for the removal of UO2 2+ from aqueous solution. J Phys Chem B 113:860–864

    Article  CAS  Google Scholar 

  37. Fan QH, Li P, Zheng Z, Wu WS, Liu CL (2014) Insights into sorpiton species of Eu(III) on gamma-Al2O3 and bentonite under different pH: studies at macro- and micro-scales. J Radioanal Nucl Chem 299:1767–1775

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from National Natural Science Foundation of China (21375148) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songsheng Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, S., Ma, B., Wu, S. et al. Comparison sorption properties of Eu(III) on titanate nanotubes and rutile studied by batch technique. J Radioanal Nucl Chem 306, 527–534 (2015). https://doi.org/10.1007/s10967-015-4114-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4114-5

Keywords

Navigation