Skip to main content
Log in

Production of high specific activity radiolanthanides for medical purposes using the UC Irvine TRIGA reactor

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Radioactive lanthanides have become an important imaging, diagnostic and therapeutic tool in the medical field. The objective of our research was to investigate the feasibility of producing radioactive lanthanides with high specific activity in a small-scale research reactor using the Szilard–Chalmers method. The results indicate that the activated nuclides recoil out of the target after neutron capture and we obtain enrichment of the radionuclide compared to the bulk irradiation. These first attempts, result in enrichment factors and yields that are low but indicates a possibility of using this technique if the method is further optimized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Neves M, Kling A, Lambrecht RM (2002) Radionuclide production for therapeutic radiopharmaceuticals. Appl Radiat Isot 57:657–664

    Article  CAS  Google Scholar 

  2. Nayak D, Lahiri S (1999) Application of radioisotopes in the field of nuclear medicine - I. Lanthanide series elements. J Radioanal Nucl Chem 242:423–432

    Article  CAS  Google Scholar 

  3. Cutler CS, Smith CJ, Ehrhardt GJ, Tyler TT, Jurisson SS, Deutsch E (2000) Current and potential therapeutic uses of lanthanide radioisotopes. Cancer Biother Radio 15:531–545

    Article  CAS  Google Scholar 

  4. Horwitz EP, McAlister DR, Bond AH, Barrans RE, Williamson JM (2005) A process for the separation of Lu-177 from neutron irradiated Yb-176 targets. Appl Radiat Isot 63:23–36

    Article  CAS  Google Scholar 

  5. Zeisler SK, Becker DW, Weber K (1999) Szilard–Chalmers reaction in praseodymium compounds. J Radioanal Nucl Chem 240:637–641

    Article  CAS  Google Scholar 

  6. Zeisler SK, Weber K (1998) Szilard–Chalmers effect in holmium complexes. J Radioanal Nucl Chem 227:105–109

    Article  CAS  Google Scholar 

  7. Dadachova E, Mirzadeh S, Lambrecht RM, Hetherington EL, Knapp FF (1994) Separation of carrier-free Ho-166 from neutron-irradiated dysprosium targets. Anal Chem 66:4272–4277

    Article  CAS  Google Scholar 

  8. Bakht MK, Sadeghi M (2011) Internal radiotherapy techniques using radiolanthanide praseodymium-142: a review of production routes, brachytherapy, unsealed source therapy. Ann Nucl Med 25:529–535

    Article  Google Scholar 

  9. Uusijarvi H, Bernhardt P, Rosch F, Maecke HR, Forssell-Aronsson E (2006) Electron- and positron-emitting radiolanthanides for therapy: aspects of dosimetry and production. J Nucl Med 47:807–814

    Google Scholar 

  10. Szilard L, Chalmers TA (1934) Chemical separation of the radioactive element from its bombarded isotope in the Fermi effect. Nature 134:462

    Article  CAS  Google Scholar 

  11. Zhernosekov KP, Filosofov DV, Rosch F (2012) The Szilard–Chalmers effect in macrocyclic ligands to increase the specific activity of reactor-produced radiolanthanides: experiments and explanations. Radiochima Acta 100:669–674

    Article  Google Scholar 

  12. Jia W, Ehrhardt GJ (1997) Enhancing the specific activity of Re-186 using an inorganic Szilard–Chalmers process. Radiochim Acta 79:131–136

    CAS  Google Scholar 

  13. Nassan L, Achkar B, Yassine T (2011) Production of Ho-166 and Sm-153 using hot atom reactions in neutron irradiated tris(cyclopentadienyl) compounds. Nukleonika 56:263–267

    CAS  Google Scholar 

  14. Tomar BS, Steinebach OM, Terpstra BE, Bode P, Wolterbeek HT (2010) Studies on production of high specific activity Mo-99 and Y-90 by Szilard–Chalmers reaction. Radiochim Acta 98:499–506

    CAS  Google Scholar 

  15. Lawrence Berkeley National Laboratory Isotopes Project Thermal Neutron Capture Data (2004) Berkeley. http://ie.lbl.gov/PGAA/PGAASearch.asp. Accessed 6 April 2013.

Download references

Acknowledgments

We are grateful for the financial support by the U.S. Nuclear regulatory commission through the faculty development grant contract no. NRC-HQ-11-G-38-0037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikael Nilsson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safavi-Tehrani, L., Miller, G.E. & Nilsson, M. Production of high specific activity radiolanthanides for medical purposes using the UC Irvine TRIGA reactor. J Radioanal Nucl Chem 303, 1099–1103 (2015). https://doi.org/10.1007/s10967-014-3486-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3486-2

Keywords

Navigation