Skip to main content
Log in

Radiological mapping in the granodiorite area of Bergama (Pergamon)-Kozak, Turkey

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

As higher radiation levels are associated with granodiorite area and the maps are more practical to interpret the results of radiological survey, the distributions of the specific activities of 226Ra, 232Th, 40K in soil-granite samples and indoor 222Rn activities throughout the granodiorite area of Bergama (Pergamon) were mapped in detail. Samples from the granites and soils underlying Kozak-Bergama (Pergamon) granodiorite area were collected and analyzed by HPGe gamma spectrometry system, while indoor radon levels in 20 dwellings of rural areas at this area were measured by the alpha track etch integrated method. This paper represents the baseline maps of natural radioactivity levels (226Ra, 232Th, 40K and 222Rn) and corresponding absorbed dose rates from outdoors terrestrial gamma radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. UNSCEAR (1993) Sources and biological effects of ionizing radiation. Report to general assembly, with scientific annexes, United Nations, New York

  2. WHO (1988) Technical report. Indoor air quality: Radon—Report on a WHO working group. J Environ Radioact 73–91 (document by the WHO Regional Office for Europe)

  3. UNSCEAR (2000) Sources and biological effects of ionizing radiation. Report to general assembly, with scientific annexes, United Nations, New York

  4. Aydarous ASh, Zeghib S, Al-Dughmah M (2010) Measurements of natural radioactivity and the resulting radiation doses from commercial granites. Radiat Prot Dosim 142(2–4):363–368

    Article  CAS  Google Scholar 

  5. Pershagen G, Liang ZH, Hrubec Z, Svensson C, Boice JD Jr (1992) Residential radon exposure and lung cancer in Swedish women. Health Phys 63:179–186

    Article  CAS  Google Scholar 

  6. Field RW, Steck DJ, Smith BJ, Brus CP, Fisher EF, Neuberger JS, Lynch CF (2001) The Iowa radon lung cancer study-phase I: residential radon gas exposure and lung cancer. Sci Total Environ 272:67–72

    Article  CAS  Google Scholar 

  7. Planinic J, Faj D, Vukovic B, Faj Z, Radolic V, Suveljak B (2003) Radon exposure and lung cancer. Radioanal Nucl Chem 256(2):349–352

    Article  CAS  Google Scholar 

  8. IARC (International Agency for Research on Cancer) (1988) Radon and manmade mineral fibres. Monographs on the evaluation of carcinogenic risks to humans, vol. 43. IARC, Lyon. ISBN 92-832-1243-6

  9. NRPB (2000) Health risks from radon. National Radiological Protection Board, UK

  10. Akyürek B, Soysal Y (1983) Biga yarımadası güneyinin (Savastepe–Kırkagaç–Bergama–Ayvalık) temel jeoloji özellikleri. Bull Miner Res Explor 95/96: I–12

  11. Akal C, Helvacı C (1999) Mafic microgranular enclaves in the Kozak granodiorite, Western Anatolia. Turk J Earth Sci 8:1–17

    CAS  Google Scholar 

  12. Altunkaynak Ş, Yılmaz Y (1998) The mount Kozak magmatic complex, Western Anatolia. J Volcanol Geotherm Res 85:211–233

    Article  CAS  Google Scholar 

  13. Delaloye M, Bingöl E (2000) Granitoids from western and northwestern Anatolia: geochemistry and modelling of geodynamic evolution. Int Geol Rev 42:241–268

    Article  Google Scholar 

  14. Boztuğ D, Harlavan R, Jonckheere R, Can İ, Sarı R (2009) Geochemistry and K-Ar cooling ages of the Ilıca, Çataldağ (Balıkesir) and Kozak (Izmir) granitoids, West Anatolia, Turkey. Geol J 44:79–103

    Article  Google Scholar 

  15. Currie LA (1968) Limits for qualitative detection and quantitative determination. Anal Chem 40(3):586–593

    Article  CAS  Google Scholar 

  16. Karadeniz Ö, Yaprak G, Akal C, Emen İ (2012) Indoor radon measurements in the granodiorite area of Bergama (Pergamon)-Kozak, Turkey. Radiat Prot Dosim 149(2):147–154

    Article  CAS  Google Scholar 

  17. Karadeniz Ö, Çıyrak N, Yaprak G, Akal C (2011) Terrestrial gamma exposure in the granodiorite area of Bergama (Pergamon)-Kozak, Turkey. Radioanal Nucl Chem 288(3):919–926

    Article  CAS  Google Scholar 

  18. Canbaz B, Çam NF, Yaprak G, Candan O (2010) Natural radioactivity (226Ra, 232Th and 40K) and assessment of radiological hazards in the Kestanbol granitoid, Turkey. Radiat Prot Dosim 141(2):192–198

    Article  CAS  Google Scholar 

  19. Karadeniz Ö, Yaprak G (2007) Distribution of radiocesium and natural gamma emitters in pine needles in coniferious forest sites of Izmir. Appl Radiat Isot 65(12):1363–1367

    Article  CAS  Google Scholar 

  20. Öztürk BC, Çam NF, Yaprak G (2013) Reference levels of natural radioactivity and 137Cs in and around the surface soils of Kestanbol pluton in Ezine region of Çanakkale province, Turkey. J Environ Sci Health Pt A 48:1522–1532

    Article  Google Scholar 

  21. Rahman SU, Matiullah Malik F, Rafique M, Anwar J, Ziafat M, Jabbar A (2011) Measurement of naturally occurring/fallout radioactive elements and assessment of annual effective dose in soil samples collected from four districts of the Punjab Province, Pakistan. J Radioanal Nucl Chem 287:647–655

    Article  CAS  Google Scholar 

  22. Jabbar A, Arshed W, Bhatti AS, Ahmad SS, Rehman SU, Dilband M (2010) Measurement of soil radioactivity levels and radiation hazard assessment in mid Rechna interfluvial region, Pakistan. J Radioanal Nucl Chem 283:371–378

    Article  CAS  Google Scholar 

  23. Tzortzis M, Tsertos H (2004) Determination of thorium, uranium and potassium elemental concentrations in surface soils in Cyprus. J Environ Radioact 77:325–338

    Article  CAS  Google Scholar 

  24. Verdoya M, Chiozzi P, Pasquale V (2001) Heat-producing radionuclides in metamorphic rocks of the Brianconnais-Piedmont Zone (Maritime Alps). Eclogae Geol Helv 94:1–7

    Google Scholar 

  25. Chiozzi P, Pasquale V, Verdoya M (2002) Naturally occurring radioactivity at the Alps-Apennines transition. Radiat Meas 35:147–154

    Article  CAS  Google Scholar 

  26. Alnour IA, Wagiran H, Ibrahim N, Laili Z, Omar M, Hamzah S, Idi BY (2012) Natural radioactivity measurements in the granite rock of quarry sites, Johor, Malaysia. Radiat Phys Chem 81:1842–1847

    Article  CAS  Google Scholar 

  27. A global geochemical database for environmental and resource management, final report of IGCP Project 259, (1995). (http://unesdoc.unesco.org/images/0010/001010/101010eo.pdf)

  28. Clark SP, Peterman ZK, Heier KS (1966) Abundances of uranium, thorium and potassium. In: Clark SP (ed) Handbook of physical constants. Geol Soc Am Mem 47:521–541

  29. Beretka J, Mathew PJ (1985) Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys 48:87–95

    Article  CAS  Google Scholar 

  30. Krieger R (1981) Radioactivity of construction materials. Betonwerk Fertigteil-Tech 47:468

    CAS  Google Scholar 

  31. OECD (1979) Nuclear energy agency. Exposure to radiation from natural radioactivity in building materials. Report by NEA group of experts (Paris, France: OECD)

  32. UNSCEAR (1982) Sources and biological effects of ionizing radiation. Report to general assembly, with scientific annexes, United Nations, New York

  33. EC (European Commission) (1999) Radiation protection 112. Radiological protection principles concerning the natural radioactivity of building materials directorate-general environment, nuclear safety and civil protection

  34. Mishra R, Tripathy SP, Pachuau L, Laldawngliana C, Lalramengzami R, Ghosh S, Dwivedi KK, Khathing DT, Ramachandran TV (1999) Concentration of radon and thoron in some dwellings of the north-eastern region in India. Indoor Built Environ 8:322–326

    Article  CAS  Google Scholar 

  35. Prasad G, Prasad Y, Gusain GS, Ramola RC (2008) Measurement of radon and thoron levels in soil, water and indoor atmosphere of Budhakedar in Garhwal Himalaya, India. Radiat Meas 43:S375–S379

    Article  CAS  Google Scholar 

  36. Misdaq MA, Amrane M, Ouguidi J (2010) Concentrations of 222Rn, 220Rn and their decay products measured in outdoor air in various rural zones (Morocco) by using solid-state nuclear track detectors and resulting radiation dose to the rural populations. Radiat Prot Dosim 138(3):223–236

    Article  CAS  Google Scholar 

  37. Bochicchio F, Ampollini M, Antignani S, Bruni B, Quarto M, Venoso G (2009) Results of the first 5 years of a study on year-to-year variations of radon concentration in Italian dwellings. Radiat Meas 44:1064–1068

    Article  CAS  Google Scholar 

  38. Manousakas M, Fouskas A, Papaefthymiou H, Koukouliou V, Siavalas G, Kritidis P (2010) Indoor radon measurements in a Greek city located in the vicinity of lignite-fired power plants. Radiat Meas 45:1060–1067

    Article  CAS  Google Scholar 

  39. ICRP (1993) Protection against 222Rn at home and at work. ICRP Publication 65. Ann. ICRP 23(2). Pergamon

  40. Chougaonkar MP, Eappen KP, Ramachandran TV, Shetty PG, Mayya YS, Sadasivan S, Venkat Raj V (2004) Profiles of doses to the population living in the high background radiation areas in Kerala, India. J Environ Radioact 71:275–297

    Article  CAS  Google Scholar 

  41. Gusain GS, Prasad G, Prasad Y, Ramola RC (2009) Comparison of indoor radon level with radon exhalation rate from soil in Garhwal Himalaya. Radiat Meas 44:1032–1035

    Article  CAS  Google Scholar 

  42. Bajwa BS, Singh H, Singh J, Singh S, Walia V (2008) A combination study of indoor radon and gamma radiation levels in Tusham ring complex. Radiat Meas 43:S475–S478

    Article  CAS  Google Scholar 

  43. Celik N, Poffijn A, Cevik U, Schepens L (2008) Indoor radon survey in dwellings of the Kars Province, Turkey. Radiat Prot Dosim 128(4):432–436

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Grateful thanks are offered to the provider of financial support for the research presented here: Dokuz Eylül University Scientific Research Project (Project no: 2009.KB.FEN.039). The authors are also grateful to Prof. Dr. Günseli Yaprak for professional advice on several aspects of the Gamma spectroscopy and radon measurements, to Dr. Cem Kıncal for his indispensable help in drawing radiological maps and to the graduate and under graduate students; Miss. Nazan Çıyrak, Mrs. İpek Emen Zeytüncü, Mr. Yiğit Nalbant, Mr. Sadi Deniz Kayhan and Mr. Onur Büyükok for assisting in sample collection, preparation of granites and soils.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özlem Karadeniz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karadeniz, Ö., Akal, C. Radiological mapping in the granodiorite area of Bergama (Pergamon)-Kozak, Turkey. J Radioanal Nucl Chem 302, 361–373 (2014). https://doi.org/10.1007/s10967-014-3216-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3216-9

Keywords

Navigation