Skip to main content
Log in

Evaluation of radiological risks due to natural radioactivity around Lynas Advanced Material Plant environment, Kuantan, Pahang, Malaysia

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Understanding the public awareness concerning the Lynas Advanced Material Plant (LAMP), an Australian rare earths processing plant located in Malaysia, a radiological study in soil and water samples collected at random surrounding the LAMP environment was undertaken using HPGe gamma-ray spectrometry. The mean soil activities for 226Ra, 232Th, and 40K were found to be 6.56 ± 0.20, 10.62 ± 0.42, and 41.02 ± 0.67 Bq/kg, respectively, while for water samples were 0.33 ± 0.05, 0.18 ± 0.04, and 4.72 ± 0.29 Bq/l, respectively. The studied areas show typical local level of radioactivity from natural background radiation. The mean gamma absorbed dose rate in soils at 1 m above the ground was found to be 11.16 nGy/h. Assuming a 20 % outdoor occupancy factor, the corresponding annual effective dose showed a mean value of 0.014 mSv year−1, significantly lower than the worldwide average value of 0.07 mSv year−1 for the annual outdoor effective dose as reported by UNSCEAR (2000). Some other representative radiation indices such as activity utilization index (AUI), H ex, H in, excess lifetime cancer risk (ELCR), and annual gonadal dose equivalent (AGDE) were derived and also compared with the world average values. Statistical analysis performed on the obtained data showed a strong positive correlation between the radiological variables and 226Ra and 232Th.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agbalagba E, Onoja R (2011) Evaluation of natural radioactivity in soil, sediment and water samples of Niger Delta (Biseni) flood plain lakes, Nigeria. J Environ Radioact 102(7):667–671

    Article  CAS  Google Scholar 

  • Al-Jundi J, Al-Bataina BA, Abu-Rukah Y, Shehadeh HM (2003) Natural radioactivity concentrations in soil samples along the Amman Aqaba Highway, Jordan. Radiat Meas 36(1–6):555–560

    Article  CAS  Google Scholar 

  • Amekudzie, A., Emi-Reynolds, G., Faanu, A., Darko, E., Awudu, A., Adukpo, O., . . . Ibrahim, A. (2011). Natural radioactivity concentrations and dose assessment in shore sediments along the coast of Greater Accra, Ghana. World Applied Sciences Journal, 13(11), 2338–2343.

  • Asaduzzaman K, Khandaker MU, Amin YM, Bradley DA, Mahat RH, Nor RM (2014) Soil-to-root vegetable transfer factors for 226Ra, 232Th, 40K, and 88Y in Malaysia. J Environ Radioact 135:120–127

    Article  CAS  Google Scholar 

  • Asgharizadeh F, Ghannadi M, Samani A, Meftahi M, Shalibayk M, Sahafipour S, Gooya E (2013) Natural radioactivity in surface soil samples from dwelling areas in Tehran city, Iran. Radiat Prot Dosim 156(3):376–382

    Article  CAS  Google Scholar 

  • Aznan FI, Yasir MS, Amran AM, Ismail B, Redzuwan Y, Irman AR (2009) Radiological studies of naturally occurring radioactive materials in some Malaysia’s sand used in building construction. Malays J Anal Sci 13(1):29–35

    Google Scholar 

  • Chandrasekaran, A., Ravisankar, R., Senthilkumar, G., Thillaivelavan, K., Dhinakaran, B., Vijayagopal, P., . . . Venkatraman, B. (2014). Spatial distribution and lifetime cancer risk due to gamma radioactivity in Yelagiri Hills, Tamilnadu, India. Egyptian Journal of Basic and Applied Sciences, 1(1), 38–48.

  • Chikasawa K, Ishii T, Sugiyama H (2001) Terrestrial gamma radiation in Kochi prefecture. Jpn J Health Sci 47(4):362–372

    Article  CAS  Google Scholar 

  • Dabayneh K, Mashal L, Hasan F (2008) Radioactivity concentration in soil samples in the southern part of the West Bank, Palestine. Radiat Prot Dosim 131(2):265–271

    Article  CAS  Google Scholar 

  • El Mamoney M, Khater AE (2004) Environmental characterization and radio-ecological impacts of non-nuclear industries on the Red Sea coast. J Environ Radioact 73(2):151–168

    Article  Google Scholar 

  • El-Gamal A, Nasr S, El-Taher A (2007) Study of the spatial distribution of natural radioactivity in the upper Egypt Nile River sediments. Radiat Meas 42(3):457–465

    Article  CAS  Google Scholar 

  • El-Taher A, Al-Zahrani J (2014) Radioactivity measurements and radiation dose assessments in soil of Al-Qassim region, Saudi Arabia. Indian J Pure Appl Phys 52(3):147–154

    CAS  Google Scholar 

  • IAEA (2003) Guidelines for radioelement mapping using gamma ray spectrometry data. IAEA-TECDOC-1363

  • ICRP (1991) 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60 Ann. ICRP 21 (1–3)

  • Jacob P, Paretzke H, Rosenbaum H, Zankl M (1986) Effective dose equivalents for photon exposures from plane sources on the ground. Radiat Prot Dosim 14(4):299–310

    CAS  Google Scholar 

  • Jibiri N, Okeyode I (2012) Evaluation of radiological hazards in the sediments of Ogun river, South-Western Nigeria. Radiat Phys Chem 81(2):103–112

    Article  CAS  Google Scholar 

  • Khandaker MU, Jojo P, Kassim H, Amin Y (2012) Radiometric analysis of construction materials using HPGe gamma-ray spectrometry. Radiat Prot Dosim 152(1–3):33–37

    Article  CAS  Google Scholar 

  • Laaksoharju M, Skårman C, Skårman E (1999) Multivariate mixing and mass balance (M3) calculations, a new tool for decoding hydrogeochemical information. Appl Geochem 14(7):861–871

    Article  CAS  Google Scholar 

  • Leung K, Lau S, Poon C (1990) Gamma radiation dose from radionuclides in Hong Kong soil. J Environ Radioact 11(3):279–290

    Article  CAS  Google Scholar 

  • Liu W, Li X, Shen Z, Wang D, Wai O, Li Y (2003) Multivariate statistical study of heavy metal enrichment in sediments of the Pearl River Estuary. Environ Pollut 121(3):377–388

    Article  CAS  Google Scholar 

  • Mandić LJ, Dragović R, Dragović S (2010) Distribution of lithogenic radionuclides in soils of the Belgrade region (Serbia). J Geochem Explor 105(1–2):43–49

    Article  Google Scholar 

  • Manigandan P, & Chandar Shekar, B. (2014) Evaluation of radionuclides in the terrestrial environment of Western Ghats. Journal of Radiation Research and Applied Sciences

  • Mehra R, Kumar S, Sonkawade R, Singh N, Badhan K (2010) Analysis of terrestrial naturally occurring radionuclides in soil samples from some areas of Sirsa district of Haryana, India using gamma ray spectrometry. Environ Earth Sci 59(5):1159–1164

    Article  CAS  Google Scholar 

  • Morsy Z, El-Wahab MA, El-Faramawy N (2012) Determination of natural radioactive elements in Abo Zaabal, Egypt by means of gamma spectroscopy. Ann Nucl Energy 44:8–11

    Article  CAS  Google Scholar 

  • NEA-OECD (1979) Exposure to radiation from natural radioactivity in building materials. Report by NEA Group of Experts. OECD, Paris

  • Obed R, Farai I, Jibiri N (2005) Population dose distribution due to soil radioactivity concentration levels in 18 cities across Nigeria. J Radiol Prot 25(3):305

    Article  CAS  Google Scholar 

  • Omoniyi IM, Oludare SM, Oluwaseyi OM (2013) Determination of radionuclides and elemental composition of clay soils by gamma-and X-ray spectrometry. Springer Plus 2(1):74

    Article  Google Scholar 

  • Qureshi AA, Tariq S, Din KU, Manzoor S, Calligaris C, Waheed A (2014) Evaluation of excessive lifetime cancer risk due to natural radioactivity in the rivers sediments of Northern Pakistan. J Radiat Res Appl Sci

  • Ramasamy V, Suresh G, Meenakshisundaram V, Ponnusamy V (2011) Horizontal and vertical characterization of radionuclides and minerals in river sediments. Appl Radiat Isot 69(1):184–195

    Article  CAS  Google Scholar 

  • Ravisankar, R., Vanasundari, K., Suganya, M., Raghu, Y., Rajalakshmi, A., Chandrasekaran, A., . . . Venkatraman, B. (2014). Multivariate statistical analysis of radiological data of building materials used in Tiruvannamalai, Tamilnadu, India. Applied Radiation and Isotopes, 85(0), 114–127.

  • Rim KT, Koo KH, Park JS (2013) Toxicological evaluations of rare earths and their health impacts to workers: a literature review. Safety Health Work 4(1):12

    Article  CAS  Google Scholar 

  • Saleh MA, Ramli AT, Alajerami Y, Aliyu AS (2013) Assessment of environmental 226Ra, 232Th and 40K concentrations in the region of elevated radiation background in Segamat District, Johor, Malaysia. J Environ Radioact 124:130–140

    Article  CAS  Google Scholar 

  • Sam AK, Ahamed MM, El Khangi F, El Nigumi Y, Holm E (1998) Radioactivity levels in the Red Sea coastal environment of Sudan. Mar Pollut Bull 36(1):19–26

    Article  CAS  Google Scholar 

  • Schmidt, G. (2013) Description and critical environmental evaluation of the REE refining plant LAMP near Kuantan/Malaysia. Radiological and non-radiological environmental consequences of the plant's operation and its wastes. Report prepared on behalf of NGO “Save Malaysia, Stop Lynas” (SMSL), Kuantan/Malaysia by Öko-Institut e.V. D-10179 Berlin, Germany

  • Singh S, Rani A, Kumar Mahajan R (2005) 226Ra, 232Th and 40K analysis in soil samples from some areas of Punjab and Himachal Pradesh, India using gamma ray spectrometry. Radiat Meas 39(4):431–439

    Article  CAS  Google Scholar 

  • Sroor A, El-Bahi S, Ahmed F, Abdel-Haleem A (2001) Natural radioactivity and radon exhalation rate of soil in southern Egypt. Appl Radiat Isot 55(6):873–879

    Article  CAS  Google Scholar 

  • Tanasković I, Golobocanin D, Miljević N (2012) Multivariate statistical analysis of hydrochemical and radiological data of Serbian spa waters. J Geochem Explor 112:226–234

    Article  Google Scholar 

  • Taskin H, Karavus M, Ay P, Topuzoglu A, Hidiroglu S, Karahan G (2009) Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey. J Environ Radioact 100(1):49–53

    Article  CAS  Google Scholar 

  • Tzortzis M, Svoukis E, Tsertos H (2004) A comprehensive study of natural gamma radioactivity levels and associated dose rates from surface soils in Cyprus. Radiat Prot Dosim 109(3):217–224

    Article  CAS  Google Scholar 

  • UNSCEAR (1988) Effects and risks of ionizing radiation. United Nations, New York, pp 565–571

    Google Scholar 

  • UNSCEAR (2000) Sources and effects of ionizing radiation, Report to General Assembly, with Scientific Annexes. United Nations, New York

    Google Scholar 

  • UNSCEAR (2008) Sources and effects of ionizing radiation. Exposures of the public and workers from various sources of radiation. Report to the General Assembly with Scientific Annex-B. United Nations, New York

  • Wang Z, He J, Du Y, He Y, Li Z, Chen Z, Yang C (2012) Natural and artificial radionuclide measurements and radioactivity assessment of soil samples in eastern Sichuan province (China). Radiat Prot Dosim 150(3):391–397

    Article  CAS  Google Scholar 

  • WHO (1978) Radiological examination of drinking water: report on a WHO working group, Brussels, 7-10 November, 1978. Regional Office for Europe, World Health Organization, Albany, NY

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayeen Uddin Khandaker.

Additional information

Responsible editor: Stuart Simpson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolo, M.T., Aziz, S.A.B.A., Khandaker, M.U. et al. Evaluation of radiological risks due to natural radioactivity around Lynas Advanced Material Plant environment, Kuantan, Pahang, Malaysia. Environ Sci Pollut Res 22, 13127–13136 (2015). https://doi.org/10.1007/s11356-015-4577-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4577-5

Keywords

Navigation