Skip to main content
Log in

Intrinsic dosimetry of glass containers: a potential interrogation tool for nuclear forensics and waste management

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Intrinsic dosimetry is the method of measuring total absorbed dose received by the walls of a container holding radioactive material. By considering the total absorbed dose received by a container in tandem with the physical characteristics of the radioactive material housed within that container, this method has the potential to provide enhanced pathway information regarding the history of the container and its radioactive contents. We report the latest in a series of experiments designed to validate and demonstrate this newly developed tool. Thermoluminescence (TL) dosimetry was used to measure dose effects on raw stock borosilicate container glass up to 70 days after gamma ray, X-ray, beta particle or ultraviolet irradiations at doses from 0.15 to 20 Gy. Two main peaks were identified in the TL glow curve when irradiated with 60Co, a relatively unstable peak around 120 °C and a more stable peak around 225 °C. Signal strength of both peaks decayed with time. The minimum measurable dose using this technique is 0.15 Gy, which is roughly equivalent to a 24 h irradiation at 1 cm from a 50 ng 60Co source. As a result of fading, this dose would be detectable for approximately 1 year post-irradiation. In a more detailed analysis, the TL glow curves were separated into five peaks centered near 120, 160, 225, 300, and 340 °C. Differences in TL glow curve shape and intensity were observed for the glasses from different geographical origins. These differences can be explained by changes in the intensities of the five peaks. This suggests that mechanisms controlling radiation induced defect formation from gamma, beta, X-ray, and UV sources may be similar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lutze W, Ewing RC (eds) (1988) Radioactive waste forms for the future. Elsevier, New York

    Google Scholar 

  2. Lohmann W, Kesternich W (1982) On the possibility of using amorphous metals in high radiation environments. In: Brager HR, Perrin JS (eds) Effects of radiation on materials: eleventh conference, ASTM STP 782, American Society for Testing and Materials, pp 779–798

  3. MacNeill KR (1991) Recycling waste streams using glass making activities. In: Proceeding of contaminated land: policy, regulation, and technology, London, UK

  4. Moody KJ, Hutcheon ID, Grant PM (2005) Nuclear forensic analysis. Taylor and Francis Group, New York

    Book  Google Scholar 

  5. Mott NF, Davies EA (1979) Electronic processes in non-crystalline materials. Clarendon Press, Oxford

    Google Scholar 

  6. McKeever SWS (1985) Thermoluminescence of solids. Cambridge University Press, Cambridge

    Book  Google Scholar 

  7. Brown G (1975) J Mater Sci 10:1841–1848

    Article  CAS  Google Scholar 

  8. Zarzycki J (1991) Glasses and the vitreous state. Cambridge University Press, Cambridge

    Google Scholar 

  9. Kordas G (2005) J Non-Cryst Solids 351:2358–2360

    Article  CAS  Google Scholar 

  10. Shkrob IA, Tadjikov BM, Trifanac AD (2000) J Non-Cryst Solids 262:6–34

    Article  CAS  Google Scholar 

  11. Shkrob IA, Tarasov VF (2000) J Chem Phys 113:10723–10732

    Article  CAS  Google Scholar 

  12. Möncke D, Ehrt D (2004) Opt Mater 25:425–437

    Article  Google Scholar 

  13. Brown G (1975) J Mater Sci 10:1481–1486

    Article  CAS  Google Scholar 

  14. Taragin MF, Eisenstein JC (1970) J Non-Cryst Solids 3:311–316

    Article  CAS  Google Scholar 

  15. Galimov DG, Yudin DM, Yafaev NR (1973) J Appl Spectrosc 19:1097–1099

    Article  Google Scholar 

  16. Fenstermacher JE (1980) J Non-Cryst Solids 38–39:239–244

    Article  Google Scholar 

  17. Magini M, Sedda AF (1984) J Non-Cryst Solids 65:145–159

    Article  CAS  Google Scholar 

  18. Bilan ON, Gorbachev SM, Cherenda NG, Voropai YS, Yudin DM (1991) Radiat Eff Def Solids 115:285–287

    Article  CAS  Google Scholar 

  19. Magnien V, Neuville DR, Cormier L, Roux J, Hazemann JL, de Ligny D, Pascarelli S, Vickridge I, Pinet O, Richet P (2008) Geochim Cosmochim Acta 72:2157–2168

    Article  CAS  Google Scholar 

  20. Griscom DL (1978) J Non-Cryst Solids 31:241–266

    Article  CAS  Google Scholar 

  21. Griscom DL (1971) J Non-Cryst Solids 6:275–282

    Article  CAS  Google Scholar 

  22. Horowitz YS (1984) Thermoluminescence and thermoluminescent dosimetry. CRC Press, Boca Raton

    Google Scholar 

  23. Furetta C (2003) Handbook of thermoluminescence. River Edge, New Jersey

    Book  Google Scholar 

  24. Aitken MJ (1985) Thermoluminescence dating. Academic Press, New York

    Google Scholar 

  25. Göksu HY (2003) Radiat Meas 37:617–620

    Article  Google Scholar 

  26. Larsson C, Koslowsky V, Gao H, Khanna S, Estan D (2005) Appl Radiat Isot 63:689–695

    Article  CAS  Google Scholar 

  27. Inrig EL, Godfrey-Smith DI, Khanna S (2008) Radiat Meas 43:726–730

    Article  CAS  Google Scholar 

  28. Schwantes JM, Miller SD, Piper MK, Amonette JE, Bonde S, Duckworth DC (2009) Radiat Meas 44:405–408

    Article  CAS  Google Scholar 

  29. Clark RA, Miller SD, Robertson JD, Gregg RA, Murphy MK, Schwantes JM (2010) Intrinsic dosimetry: a potential new tool for nuclear forensics investigations. In: Proceedings of the 51st annual meeting of Institute of Nuclear Materials Management (INMM), Baltimore

  30. Wertz JE, Bolton JR (1972) Electron spin resonance: elementary theory and practical applications. Chapman and Hall, New York

    Google Scholar 

  31. Knoll GF (1999) Radiation detection and measurement. Hoboken, New Jersey

    Google Scholar 

  32. Srivastava JK, Supe SJ (1983) J Phys D Appl Phys 16:1813–1818

    Article  CAS  Google Scholar 

  33. Kitis G, Pagonis V, Carty H, Tatsis E (2002) Radiat Prot Dosim 100:225–228

    Article  CAS  Google Scholar 

  34. Chung KS, Park CY, Lee JI, Kim JL (2010) Radiat Meas 45:320–322

    Article  CAS  Google Scholar 

  35. Griscom DL (1980) J Non-Cryst Solids 40:211–272

    Article  CAS  Google Scholar 

  36. Boizot B, Petite G, Ghaleb D, Calas G (1998) Nucl Instrum Meth Res B 141:580–584

    Article  CAS  Google Scholar 

  37. Kumar M, Seshagiri TK, Kadam RM, Godbole SV (2011) Mater Res Bull 46:1359–1365

    Article  CAS  Google Scholar 

  38. Mohapatra M, Kadam RM, Mishra RK, Dutta D, Pujari PK, Kaushik CP, Kshirsagar RJ, Tomar BS, Godbole SV (2011) Nucl Instrum Meth Res B 269:2057–2062

    Article  CAS  Google Scholar 

  39. Malchukova E, Boizot B (2010) Mater Res Bull 45:1299–1303

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was sponsored by the National Technical Nuclear Forensics Center within the Department of Homeland Security and conducted at the US Department of Energy’s Pacific Northwest National Laboratory, which is operated for DOE by Battelle under Contract DE-AC05-76RL1830. Additional support was received from the Nuclear Forensics Graduate Fellowship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Clark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, R.A., Robertson, J.D., Walter, E.D. et al. Intrinsic dosimetry of glass containers: a potential interrogation tool for nuclear forensics and waste management. J Radioanal Nucl Chem 296, 663–668 (2013). https://doi.org/10.1007/s10967-012-2051-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-2051-0

Keywords

Navigation