Skip to main content

Advertisement

Log in

Fabrication of graphite-graphene-ionic liquid modified carbon nanotubes filled natural rubber thin films for microwave and energy storage applications

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

An Erratum to this article was published on 16 August 2015

Abstract

Exploiting polymer nanocomposites as dielectric and heat storage devices is an important approach to develop high performance materials. Graphite (GT), thermally reduced graphene oxide (TRG), and hybrid consisting of TRG and ionic liquid (1-Ethyl-2, 3-dimethylimidazolium bis (trifluoromethylsulfonyl) imide) modified carbon nanotubes (IMCNT) were added to natural rubber and membranes were fabricated via melt mixing method. The amount of the GT, TRG, TRG+IMCNT used in this work was in the range of 0.5 to 5 wt%. Mechanical properties of NR nanocomposites revealed that the hybrid (TRG+IMCNT) (5 wt%) system showed high tensile strength, high modulus and low elongation at break as compared to neat NR, NR reinforced with GT (5 wt%) and NR reinforced with TRG (5 wt%) systems owing to the synergistic hybrid effect caused by the network formation of the hybrid fillers inside NR matrix. Dielectric properties of the prepared membranes were studied at 2.5, 10 and 20 GHz in the microwave frequency region using a Split Post Dielectric Resonator (SPDR) based technique. The incorporation of micro and nanofillers in the natural rubber (NR) matrix results in consistent improvement in dielectric constant and lower loss tangent values. In certain cases the samples containing 5 wt% of filler exhibited high loss or conducting behaviour at higher frequencies (10 and 20 GHz). Different techniques had to be employed for measuring the dielectric constant and loss tangent of the prepared membranes where they showed a high loss or conducting behaviour. Moreover, thermal history like glass transition temperature and the change in heat capacity were estimated using Differential Scanning Calorimetry (DSC). In addition, the dispersion of micro and nanofillers inside the NR was estimated using X-ray followed by Transmission Electron Microscopy for the morphology architecture of nanofillers. The morphology of the prepared membranes was correlated with the mechanical, dielectric and thermal properties. The hybrid system (TRG+IMCNT) exhibited high dielectric constant (5.6) and low heat capacity value (0.32 J/g/°C) as compared to GT and TRG systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Brosseau C, Boulic F, Queffelec P et al (1997) Dielectric and microstructure properties of polymer carbon black composites. J Appl Phys 81:882–890

    Article  CAS  Google Scholar 

  2. Li ZH (2008) Effects of carbon blacks with various structures on vulcanization and reinforcement of filled ethylene-propylene-diene rubber. Express Polym Lett 2:695–704

    Article  CAS  Google Scholar 

  3. Wang C, Guo Z-X, Fu S et al (2004) Polymers containing fullerene or carbon nanotube structures. Prog Polym Sci 29:1079–1141

    Article  Google Scholar 

  4. Dennler G, Scharber MC, Brabec CJ (2009) Polymer-fullerene bulk-heterojunction solar cells. Adv Mater 21:1323–1338

    Article  CAS  Google Scholar 

  5. Szczepanik M, Stabik J, Dybowska A (2009) Influence of graphite on electrical properties of polymer composites. Arch Mater Sci Eng 37:37–44

    Google Scholar 

  6. Compton OC, Kim S, Pierre C, Torkelson JM, Nguyen ST (2010) Crumpled graphene nanosheets as highly effective barrier property enhancers. Adv Mater 22:4759–4763

    Article  CAS  Google Scholar 

  7. Moazzami Gudarzi M (2012) Enhancement of dispersion and bonding of graphene-polymer through wet transfer of functionalized graphene oxide. Express Polym Lett 6:1017–1031

    Article  CAS  Google Scholar 

  8. Vega JF, Martínez-Salazar J, Trujillo M et al (2009) Rheology, processing, tensile properties, and crystallization of polyethylene/carbon nanotube nanocomposites. Macromolecules 42:4719–4727

    Article  CAS  Google Scholar 

  9. Bokobza L (2012) Multiwall carbon nanotube-filled natural rubber: electrical and mechanical properties. Express Polym Lett 6:213–223

    Article  CAS  Google Scholar 

  10. Ismail H, Pasbakhsh P, Fauzi MNA, Abu Bakar A (2008) Morphological, thermal and tensile properties of halloysite nanotubes filled ethylene propylene diene monomer (EPDM) nanocomposites. Polym Test 27:841–850

    Article  CAS  Google Scholar 

  11. Tang W, Santare MH, Advani SG (2003) Melt processing and mechanical property characterization of multi-walled carbon nanotube/high density polyethylene (MWNT/HDPE) composite films. Carbon 41:2779–2785

    Article  CAS  Google Scholar 

  12. Montazeri A, Javadpour J, Khavandi A et al (2010) Mechanical properties of multi-walled carbon nanotube/epoxy composites. Mater Des 31:4202–4208

    Article  CAS  Google Scholar 

  13. Phang IY, Shen L, Chow SY, Zhang W-D (2004) Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites. Macromolecules 37:7214–7222

    Article  Google Scholar 

  14. Müller MT, Krause B, Kretzschmar B, Pötschke P (2011) Influence of feeding conditions in twin-screw extrusion of PP/MWCNT composites on electrical and mechanical properties. Compos Sci Technol 71:1535–1542

    Article  Google Scholar 

  15. Deng Y, Li Y, Dai J et al (2011) Functionalization of graphene oxide towards thermo-sensitive nanocomposites via moderate in situ SET-LRP. J Polym Sci A Polym Chem 49:4747–4755

    Article  CAS  Google Scholar 

  16. Rafiee MA, Rafiee J, Srivastava I et al (2010) Fracture and fatigue in graphene nanocomposites. Small 6:179–183

    Article  CAS  Google Scholar 

  17. Graphene A, Qi X, Pu K et al (2010) Amphiphilic graphene composites. Angew Chem Int Ed 49:9426–9429

    Article  Google Scholar 

  18. Wu T, Pan Y, Liu E, Li L (2012) Carbon nanotube/polypropylene composite particles for microwave welding. J Appl Polym Sci 126:283–289

    Article  Google Scholar 

  19. Theilmann P, Chu KM, Bandaru PR et al (2012) Optimisation of microwave absorption of carbon nanotube composites through use of carboxyl-epoxide functional group linkages. Electron Lett 48:638

    Article  CAS  Google Scholar 

  20. Bhattacharya P (2013) Microwave absorption behaviour of MWCNT based nanocomposites in X-band region. Express Polym Lett 7:212–223

    Article  CAS  Google Scholar 

  21. Al-Hartomy OA, Al-Ghamdi A, Al-Salamy F et al (2012) Dielectric and microwave properties of graphene nanoplatelets/carbon black filled natural rubber composites. Int J Mater Chem 2:116–122

    Article  Google Scholar 

  22. Al-Hartomy OA (2012) Dielectric and microwave properties of natural rubber based nanocomposites containing graphene. Mater Sci Appl 03:453–459

    CAS  Google Scholar 

  23. Subrahmanyam KS, Vivekchand SRC, Govindaraj A, Rao CNR (2008) A study of graphenes prepared by different methods: characterization, properties and solubilization. J Mater Chem 18:1517

    Article  CAS  Google Scholar 

  24. Krupa J, Gregory AP, Rochard OC, Clarke RN, Riddle B, Baker-Jarvis J (2001) Uncertainty of complex permittivity measurements by split-post dielectric resonator technique. J Eur Ceram Soc 21:2673–2676

    Article  Google Scholar 

  25. Fukushima T, Kosaka A, Ishimura Y, Yamamoto T, Takigawa T, Ishii N, Aida T (2003) Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science 300(5628):2072–2074

    Article  CAS  Google Scholar 

  26. Wang J, Chu H, Li Y (2008) Why single-walled carbon nanotubes can be dispersed in imidazolium-based ionic liquids. ACS Nano 2(12):2540–2546

    Article  CAS  Google Scholar 

  27. Rao CNR, Biswas K, Subrahmanyam KS, Govindaraj A (2009) Graphene, the new nanocarbon. J Mater Chem 19:2457–2469

    Article  CAS  Google Scholar 

  28. Chieu TC, Dresselhaus MS (1982) Raman studies of benzene-derived graphite fibers. Phys Rev B 26:5867–5877

    Article  CAS  Google Scholar 

  29. Chen M, Park C, Choi J, Oh W (2011) Synthesis and characterization of metal (Pt, Pd and Fe)-graphene composites. J Korean Ceram Soc 48:147–151

    Article  CAS  Google Scholar 

  30. Potts JR, Shankar O, Du L, Ruoff RS (2012) Processing–morphology–property relationships and composite theory analysis of reduced graphene oxide/natural rubber nanocomposites. Macromolecules 45:6045–6055

  31. Lv Y, Yu L, Huang H et al (2012) Application of the soluble salt-assisted route to scalable synthesis of ZnO nanopowder with repeated photocatalytic activity. Nanotechnology 23:065402

    Article  Google Scholar 

  32. Panigrahy B, Aslam M, Bahadur D (2012) Effect of Fe doping concentration on optical and magnetic properties of ZnO nanorods. Nanotechnology 23:115601

    Article  Google Scholar 

  33. Kishor S, Castro M, Saiter A et al (2013) Development of poly (isobutylene-co-isoprene)/reduced graphene oxide nanocomposites for barrier, dielectric and sensing applications. Mater Lett 96:109–112

    Article  Google Scholar 

  34. Potts JR, Shankar O, Murali S et al (2013) Latex and two-roll mill processing of thermally-exfoliated graphite oxide/natural rubber nanocomposites. Compos Sci Technol 74:166–172

    Article  CAS  Google Scholar 

  35. Ponnamma D, Sadasivuni KK, Strankowski M et al (2013) Synergistic effect of multi walled carbon nanotubes and reduced graphene oxides in natural rubber for sensing application. Soft Matter 9:10343–10353

    Article  CAS  Google Scholar 

  36. Jose JP, Thomas S (2014) Alumina-clay nanoscale hybrid filler assembling in cross-linked polyethylene based nanocomposites: mechanics and thermal properties. Phys Chem Chem Phys 16:14730–14740

    Article  CAS  Google Scholar 

  37. Thomas SP, Thomas S, Bandyopadhyay S (2009) Polystyrene calcium phosphate nanocomposites : preparation, morphology, and mechanical behavior polystyrene. J Phys Chem C 113(1):97–104

    Article  CAS  Google Scholar 

  38. Guo J, Wang X, Liao X, Zhanga W, Shi B (2012) Skin collagen fiber-biotemplated synthesis of size-tunable silver nanoparticle-embedded hierarchical intertextures with lightweight and highly efficient microwave absorption properties. J Phys Chem C 116:8188–8195

    Google Scholar 

Download references

Acknowledgments

We would like to express our sincere thanks to UGC, New Delhi, DST Nanomission and Universiti Teknologi MARA, Shah Alam, Malaysia for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. C. James Raju, Nandakumar Kalarikkal or Sabu Thomas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaragalla, S., Sindam, B., Abraham, J. et al. Fabrication of graphite-graphene-ionic liquid modified carbon nanotubes filled natural rubber thin films for microwave and energy storage applications. J Polym Res 22, 137 (2015). https://doi.org/10.1007/s10965-015-0776-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0776-5

Keywords

Navigation