Skip to main content
Log in

Near infrared dye functionalized MWCNT as an effective initiator for the ring opening polymerization of ε-caprolactone

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Multiwall carbon nano tube (MWCNT) was oxidized in the presence of mineral acid mixtures and further followed by the conjugation with near infra red dye (NIR dye). Thus obtained NIR dye functionalized MWCNT was characterized by various analytical techniques. The application of MWCNT-NIR dye system towards the ring opening polymerization (ROP) of ε-Caprolactone (C.L) was carried out by bulk polymerization method at 140 °C under inert atmosphere with the aid of stannous octoate (S.O) as a catalyst. The ROP was carried out at two different experimental conditions like variations in [M0/I0] and [C.L] in order to find out the structure–property relationship. The melting temperature (Tm) of the MWCNT-NIR dye end capped poly(caprolactone) (PCL) was increased with the increase in [M0/I0] values. The binding constant (K) between the MWCNT-NIR dye and PCL was determined by the UV-visible spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Zhang Y, He H, Gao C, Wu J (2009) Langmuir 25:5814. doi:10.1021/la803906s

    Article  CAS  Google Scholar 

  2. Kathi J, Rhee KY (2008) J Mater Sci 43:33. doi:10.1007/s10853-007-2209-2

    Article  CAS  Google Scholar 

  3. Lee KM, Li L, Dai L (2005) J Am Chem Soc 127:4122. doi:10.1021/ja0423670

    Article  CAS  Google Scholar 

  4. Liu YX, Du ZJ, Li Y, Zhang C, Li HQ (2006) Chin J Chem Soc 24:563

    Article  Google Scholar 

  5. Zhang H, Guo H, Deng X, Gu P, Chen Z, Jiao Z (2010) Nanotechnology 21:085706. doi:10.1088/0957-4484/21/8/085706

    Article  Google Scholar 

  6. Chua TP, Mariatti M, Azizan A, Paghid AA (2009) J Alloys Compd 480:534. doi:10.1061/j.jallcomp.2009.01.093

    Article  CAS  Google Scholar 

  7. Shi Q, Yang D, Su Y, Yuan W (2007) J Nanoparticle Res 9:1205. doi:10.1007/s11051-9200-8

    Article  CAS  Google Scholar 

  8. Shen J, Huang W, Wu L, Hu Y, Ye M (2007) Compos Sci Technol 67:3041. doi:10.1016/j.compsci.tech.2007.04.025

    Article  CAS  Google Scholar 

  9. Kumar NA, Kim SH, Cho BG, Lim KT, Jeong YT (2009) Colloid Polym Sci 287:97. doi:10.1007/s00396-008-1954-4

    Article  CAS  Google Scholar 

  10. Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Sioku A, Kallitsis I (2008) Carbon 46:833. doi:10.1016/j.carbon.2008.02.012

    Article  CAS  Google Scholar 

  11. Liu Y, Zhang C, Da Z, Li C, Li Y, Li H (2008) Carbon 46:1670. doi:10.1016/j.carbon.2008.07.017

    Article  CAS  Google Scholar 

  12. Kim SW, Kim T, Kim YS, Choi HS, Lim HJ (2012) Carbon 50:3. doi:10.1016/j.carbon.2011.08.011

    Article  CAS  Google Scholar 

  13. Gorur M, Yilmaz F, Demirci A, San SE (2010) J Polym Sci A Polym Chem 48:3668. doi:10.1002/pola.24151

    Article  CAS  Google Scholar 

  14. Chen PS, Liu YC, Lin CH, Ko BT (2010) J Polym Sci A Polym Chem 48:3564. doi:10.1002/pola.24133

    Article  CAS  Google Scholar 

  15. Peeters J, Palmans ARA, Scbejen F, Meijer EW (2004) Biomacromolecules 5:1862. doi:10.1021/bm0497949

    Article  CAS  Google Scholar 

  16. Yang Y, Tsui CP, Tang CY, Qiu S, Zhao Q, Cheng X (2010) Eur Polym J 46:145. doi:10.1016/eurpolymj.2009.10.020

    Article  CAS  Google Scholar 

  17. Palard I, Schappacher M, Soum A, Guillaume SM (2006) Polym Int 55:1132. doi:10.1002/pi.1984

    Article  CAS  Google Scholar 

  18. Cheng G, Fan X, Pan W, Liu Y (2010) J Polym Res 17:847. doi:10.1007/s1096j-009-9378-6

    Article  CAS  Google Scholar 

  19. Khan JH, Schue F, George GA (2009) Polym Int 58:296. doi:10.1002/pi.2531

    Article  CAS  Google Scholar 

  20. Karada A, Osaki M, Takashima Y, Yamaguchi Y (2008) Acc Chem Res 41:1143. doi:10.1021/ar800079v

    Article  Google Scholar 

  21. Storey RF, Sherman JW (2002) Macromolecules 35:1504. doi:10.1021/ma010986c

    Article  CAS  Google Scholar 

  22. Zeng H, Gao C, Yan D (2006) Adv Funct Mater 16:812. doi:10.1002/adfm.200500607

    Article  CAS  Google Scholar 

  23. Grafahrend D, Calvet JL, Salber J, Klee D (2008) J Mater Sci Mater Med 4:1479. doi:10.1007/s10856-007-3299-8

    Article  Google Scholar 

  24. Zhang Z, Ankone MJK, Dijkstra PJ, Birg C, Feijen J (2001) Polym Bull 46:51. doi:10.1007/s002890170088

    Article  Google Scholar 

  25. Bryan GO, Wong BM, Mc Elhanen JR (2010) Appl Mater Interface 2:1594. doi:10.1021/am100050v

    Article  Google Scholar 

  26. Tong R, Cheng J (2009) J Am Chem Soc 131:4744. doi:10.1021/ja8084675

    Article  CAS  Google Scholar 

  27. Zhang G, Clair TL, Fraser CL (2009) Macromolecules 42:3092. doi:10.1021/ma900018r

    Article  CAS  Google Scholar 

  28. Zhang G, Palmer GM, Dewhirst MW, Fraser CL (2009) Nat Mater 8:747. doi:10.1038/nmat2509

    Article  CAS  Google Scholar 

  29. Qiu LY, Bae YH (2007) Biomaterials 28:4132. doi:10.1016/j.biomaterials.2007.05.035

    Article  CAS  Google Scholar 

  30. Chen HH, Anbarasan R, Kuo LS, Chen PH (2011) J Mater Sci 46:1796. doi:10.1007/s10853-010-4857-x

    Article  CAS  Google Scholar 

  31. Anbarasan R, Peng CA (2011) J Mater Sci 46:9992. doi:10.1007/s10853-010-4857-x

    Article  Google Scholar 

  32. Mi Z, Ying YJ, Zhong YW, Yin HX, Wu YY (2010) Chin Sci Bull 55:1376. doi:10.1007/s11434-010-0151-1

    Article  Google Scholar 

  33. Oshimura M, Takasu A (2010) Macromolecules 43:2283. doi:10.1021/ma902557t

    Article  CAS  Google Scholar 

  34. Zhu W, Tong X, Xie W, Shen Z (2010) J Appl Polym Sci 118:1958. doi:10.1002/app.31173

    Google Scholar 

  35. Meelua W, Molloy R, Meepowpan P, Punyodom W (2012) J Polym Res 19:9799. doi:10.1007/sl0965-011-9799-8

    Article  Google Scholar 

  36. Cheng G, Fan X, Pan W, Liu Y (2010) J Polym Res 17:847. doi:10.1007/sl0965-009-9376-6

    Article  CAS  Google Scholar 

  37. Wu Y, Wang T, Li M, Fan T, Guo H, Wu X (2011) J Polym Res 18:447. doi:10.1007/sl0965-010-9518-x

    Google Scholar 

  38. Ciapetti G, Ambrosio L, Savarino L, Granchi D, Giunti A (2003) Biomaterials 24:3815. doi:10.1016/s0142-9612(03)00263-1

    Article  CAS  Google Scholar 

  39. Fischer GM, Krondato MI, Zumbusch A (2009) Chem Eur J 15:4857. doi:10.1002/chem.200801996

    Article  CAS  Google Scholar 

  40. Berfalino CA, Caputo G, Barolo C, Voscardi G, Coluccia S (2006) J Fluoresc 16:221. doi:10.1007/s10895--6-00948

    Article  Google Scholar 

  41. Flanagan JH, Khan SH, Soper SA, Hammer RP (1997) Bioconjug Chem 8:751. doi:10.1021/bc970113g

    Article  CAS  Google Scholar 

  42. Hajian R, Shams N, Mohagheghian M (2009) J Braz Chem Soc 20:1399

    Article  CAS  Google Scholar 

  43. Williams RJ, Lipowska M, Patronos G, Strekowski L (1993) Anal Chem 65:601. doi:10.1021/ac00059019

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Anbarasan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

TGA of (a) pristine MWCNT, (b) NIR dye conjugated MWCNT (DOC 196 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meenarathi, B., Chen, HH., Chen, PH. et al. Near infrared dye functionalized MWCNT as an effective initiator for the ring opening polymerization of ε-caprolactone. J Polym Res 20, 118 (2013). https://doi.org/10.1007/s10965-013-0118-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0118-4

Keywords

Navigation