Skip to main content
Log in

Preparation and characterization of natural polymers as stabilizer for magnetic nanoparticles by gamma irradiation

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Hydroxyethyl methacryate (HEMA)-Agar and Hydroxyethyl methacryate (HEMA)-Gelatin hydrogels have been prepared by gamma radiation as polymeric stabilizer for magnetic nanoparticles via radiation technique and loading co-precipitation technique. The swelling property of the prepared hydrogels in bidistilled water and different pH’s was studied and the results showed that, the swelling percent of the plain hydrogel was found to be higher for all different compositions. The morphology and structure of the prepared hydrogels and dispersion of the magnetic nanoparticles in the hydrogel network were examined by Scanning electron microscopy (SEM) and Infrared spectroscopy (FT-IR). The particle size of the formed magnetic nanoparticles has been confirmed by Dynamic light scattering (DLS) and Transmission electron microscope (TEM), and it was found to be smaller in loading co-precipitation technique than irradiation technique. The HEMA-Gelatin-Fe3O4 has higher particle size than HEMA-Agar-Fe3O4 (HAF). Finally, the drug loading capacities of the magnetic nanoparticles and their releasing dependence on different pH were investigated with doxorubicin hydrochloride (DOX) as an anticancer drug model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 3

Similar content being viewed by others

References

  1. Khan AA, Habiba U, Khan A (2009) Synthesis and characterization of organic-inorganic nanocomposite poly-o-anisidine Sn(IV) arsenophosphate: its analytical applications as Pb(II) ion-selective membrane electrode. Int J Anal Chem 1:10

    Google Scholar 

  2. Colard CAL, Cave RA, Grossiord N, Covington JA, Bon SAF (2009) Conducting nanocomposite polymer foams from ice-crystal templated assembly of mixtures of colloids. Adv Mat 21:2894–2898

    Article  CAS  Google Scholar 

  3. Cheung DL, Bon SAF (2009) Interaction of nanoparticles with ideal liquid-liquid interfaces. Phys Rev Lett 102:1–4

    Article  Google Scholar 

  4. Cao ZH, Shan GR, Sheibat-Othman N, Putaux JL, Bourgeat-Lami E (2010) Synthesis of oily core-hybrid shell nanocapsules through interfacial free radical copolymerization in miniemulsion: droplet formation and nucleation. J Polym Sci A Polym Chem 48:593–603

    Article  CAS  Google Scholar 

  5. Nguyen D, Duguet E, Bourgeat-Lami E, Ravaine S (2010) An easy way to control the morphology of colloidal polymer-oxide supraparticles through seeded dispersion polymerization. Langmuir 26:6086–6090

    Article  CAS  Google Scholar 

  6. Sheibat ON, Bourgeat LE (2009) Use of silica particles for the formation of organic-inorganic particles by surfactant-free emulsion polymerization. Langmuir 25:10121–10133

    Article  Google Scholar 

  7. Medeiros SF, Santos AM, Fessi H, Elaissari A (2011) Stimuli-responsive magnetic particles for biomedical applications. Int J Pharm 403:139–161

    Article  CAS  Google Scholar 

  8. Laurent S, Forge D, Port M, Roch A, Robic C, Vander EL, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    Article  CAS  Google Scholar 

  9. Bergemann C, Muller-Schulte D, Oster J, Brassard LA, Lubbe AS (1999) Magnetic ion-exchange nano-and microparticles formedical, biochemical and molecular biological applications. J Magn Magn Mater 194:45–52

    Article  CAS  Google Scholar 

  10. Bhattarai SR, Remant BKC, Aryal S, Khil KMS, Kim HY (2007) N-acylated chitosan stabilized iron oxide nanoparticles as a novel nano-matrix and ceramic modification. Carbohydr Polym 69:467–477

    Article  CAS  Google Scholar 

  11. Corr SA, Rakovich YP, Gun’ko YK (2008) Multifunctional magnetic-fluorescent nanocomposites for biomedical applications. Nanoscale Res Lett 3:87–104

    Article  CAS  Google Scholar 

  12. Chang PR, Jiugao Y, Xiaofei M, Debbie PA (2011) Polysaccharides as stabilizers for the synthesis of magnetic nanoparticles. Carbohydr Polym 83:640–644

    Article  CAS  Google Scholar 

  13. Nasongkla N, Bey E, Ren J, Ai H, Khemtong C, Guthi JS (2006) Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett 6(11):2427

    Article  CAS  Google Scholar 

  14. Hong G, Yuan R, Liang B, Shen J, Yang X, Shuai X (2008) Folate-functionalized polymeric micelle as hepatic carcinoma-targeted, MRI-ultrasensitive delivery system of antitumor drugs. Biomed Microdevices 10(5):693–700

    Article  CAS  Google Scholar 

  15. Shuai X, Ai H, Nasongkla N, Kim S, Gao J (2004) Micellar carriers based on block copolymers of poly(epsilon-caprolactone) and poly(ethylene glycol) for doxorubicin delivery. J Control Release 98(3):415–426

    Article  CAS  Google Scholar 

  16. Yu MK, Jeong YY, Park J, Park S, Kim JW, Min JJ (2008) Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew Chem Int Ed Engl 47(29):5362

    Article  CAS  Google Scholar 

  17. Mohan YM, Kyungjae L, Thathan P, Geckeler KE (2007) Hydrogel networks as nanoreactors: a novel approach to silver nanoparticles for antibacterial applications. Polymer 48:158–164

    Article  CAS  Google Scholar 

  18. Eid M, Abdel-Ghaffar MA, Dessouki AM (2009) Effect of maleic acid content on the thermal stability, swelling behaviour and network structure of gelatin-based hydrogels prepared by gamma irradiation. Nucl Instrum Methods Phys Res B 267:91–98

    Article  CAS  Google Scholar 

  19. Kumar R, Unstedt HM (2005) Silver ion release from antimicrobial polyamide/silver composites. Biomaterials 26:2081–2088

    Article  CAS  Google Scholar 

  20. Eid M (2008) In vitro release studies of vitamin B12 from poly N-vinyl pyrrolidone/starch hydrogels grafted with acrylic acid synthesized by gamma radiation. Nucl Instrum Methods Phys Res B 266:5020–5026

    Article  CAS  Google Scholar 

  21. El-Arnaouty MB (2010) Effect of mono and di–protic acid on the characterization of 2-hydroxyethyl-methacrylate based hydrogels prepared by γ-radiation and its application for delivery. J Rad Res Appl Sci 3:763–790

    Google Scholar 

  22. Sivudu KS, Rhee KY (2009) Preparation and characterization of pH-responsive hydrogel magnetite nanocomposite. Colloids Surf A Physicochem Eng Asp 349:29–34

    Article  CAS  Google Scholar 

  23. Vimala K, Sivudu KS, Mohan YM, Sreedhar B, Raju KM (2009) Controlled silver nanoparticles synthesis in semi-hydrogel networks of poly(acrylamide) and carbohydrates: a rationalmethodology for antibacterial application. Carbohydr Polym 75:463–471

    Article  CAS  Google Scholar 

  24. Lanthong P, Nuish R, Kiatkamjornwong S (2006) Graft copolymerization, characterization, and degradation of cassava starch-g-acrylamide/itaconic acid superabsorbents. Carbohydr Polym 66:229–245

    Article  CAS  Google Scholar 

  25. Fang JM, Fowler PA, Sayers C, Williams PA (2004) The chemical modification of a range of starches under aqueous reaction conditions. Carbohydr Polym 55:283–289

    Article  CAS  Google Scholar 

  26. Wang P, Wu X, Xue D, Xu K, Tan Y, Du X, Li W (2009) Preparation and characterization of cationic corn starch with a high degree of substitution in dioxane-THF-water media. Carbohydr Res 344:851–855

    Article  CAS  Google Scholar 

  27. Fan L, Luo C, Zhen L, Fuguang L, Qiu H (2011) Preparation of magnetic modified chitosan and adsorption of Zn2+ from aqueous solutions. Colloids Surf B Biointerfaces 88:574–581

    Article  CAS  Google Scholar 

  28. Li B, Jia D, Zhou Y, Hu Q, Cai W (2006) In situ hybridization to chitosan/magnetite nanocomposite induced by the magnetic field. J Magn Magn Mater 306:223–227

    Article  CAS  Google Scholar 

  29. Eid M (2011) Gamma radiation synthesis and characterization of starch based polyelectrolyte hydrogels loaded silver nanoparticles. J Inorg Organomet Polym 21:297–305

    Article  CAS  Google Scholar 

  30. Eid M, El-Arnaouty MB, Salah M, Soliman ES, Hegazy EA (2012) Radiation synthesis and characterization of poly(vinyl alcohol)/poly(N-vinyl-2-pyrrolidone) based hydrogels containing silver nanoparticles. J Polym Res 19:9835–9844

    Article  Google Scholar 

  31. Yang X, Chen L, Han B, Yang X, Duan H (2010) Preparation of magnetite and tumor dual-targeting hollow polymer microspheres with pH-sensitivity for anticancer drug-carriers. Polymer 51:2533–2539

    Article  CAS  Google Scholar 

  32. Taurin S, Nehoff H, Khaled Greish K (2012) Anticancer nanomedicine and tumor vascular permeability; where is the missing link? J Control Release 164:265–275

    Article  CAS  Google Scholar 

  33. Sahu SK, Maiti S, Pramanik A, Ghosh SK, Pramanik P (2012) Controlling the thickness of polymeric shell on magnetic nanoparticles loaded with doxorubicin for targeted delivery and MRI contrast agent. Carbohydr Polym 87:2593–2604

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Eid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eid, M. Preparation and characterization of natural polymers as stabilizer for magnetic nanoparticles by gamma irradiation. J Polym Res 20, 112 (2013). https://doi.org/10.1007/s10965-013-0112-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0112-x

Keywords

Navigation