Skip to main content
Log in

(Re)processing effects on linear low-density polyethylene/silica nanocomposites

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A linear low density polyethylene matrix was melt compounded with a given amount (2 vol.%) of both untreated (hydrophilic) and surface treated (hydrophobic) fumed silica nanoparticles with the aim to investigate the influence of the time under processing conditions on the microstructure and thermo-mechanical properties of the resulting materials. Crosslinking reactions induced by thermal processing caused a remarkable increase of the melt viscosity, as revealed by the melt flow index values of both neat matrix and nanocomposites. Thermal oxidation of the matrix was slightly reduced by the introduction of fumed silica nanoparticles, especially for long compounding times. Differential scanning calorimetry evidenced how silica nanoparticles had a nucleating effect on the matrix, while both the melting temperature and the relative crystallinity were decreased by the compounding process. Nanosilica addition promoted a general improvement of the tensile properties, that progressively decreased with the processing time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bondioli F, Dorigato A, Fabbri P, Messori M, Pegoretti A (2008) High-density polyethylene reinforced with submicron titania particles. Polym Eng Sci 48:448–457

    Article  CAS  Google Scholar 

  2. Bondioli F, Dorigato A, Fabbri P, Messori M, Pegoretti A (2009) Improving the creep stability of high-density polyethylene with acicular titania nanoparticles. J Appl Polym Sci 112:1045–1055

    Article  CAS  Google Scholar 

  3. Kim JK, Hu C, Woo RSC, Sham ML (2005) Moisture barrier characteristics of organoclay–epoxy nanocomposites. Compos Sci Technol 65:805–813

    Article  CAS  Google Scholar 

  4. Kontou E, Niaounakis M (2006) Thermo-mechanical properties of lldpe/sio2 nanocomposites. Polymer 47:1267–1280

    Article  CAS  Google Scholar 

  5. Pegoretti A, Dorigato A, Penati A (2007) Tensile mechanical response of polyethylene – clay nanocomposites. Expr Pol Lett 1(3):123–131

    Article  CAS  Google Scholar 

  6. Pegoretti A, Dorigato A, Penati A (2008) Contact angle measurements as a tool to investigate the filer-matrix interactions in polyurethane-clay nanocomposites from blocked prepolymer. Eur Polym J 44:1662–1672

    Article  CAS  Google Scholar 

  7. Dimitry OIH, Abdeen ZI, Ismail EA, Saad ALG (2010) Preparation and properties of elastomeric polyurethane/organically modified montmorillonite nanocomposites. J Polym Res 17:801–813

    Article  CAS  Google Scholar 

  8. Zhang J, Jiang DD, Wilkie CA (2005) Fire properties of styrenic polymer–clay nanocomposites based on oligomerically-modified clay. Polym Degrad Stab 91:358–366

    Article  Google Scholar 

  9. Kojima Y, Usuki A, Kawasumi M, Kojima Y, Fukushima Y, Okada A (1993) Mechanical properties of nylon 6 – clay hybrid. J Mater Res 8:1185–1189

    Article  CAS  Google Scholar 

  10. Supova M, Martynkova GS, Barabaszova K (2011) Effect of nanofillers dispersion in polymer matrices: a review. Sci Adv Mater 3:1–25

    Article  CAS  Google Scholar 

  11. Malpass DB (2010) Introduction to industrial polyethylene. Co-published by John Wiley & Sons and Scrivener Publishing LCC, Salem

    Book  Google Scholar 

  12. Dorigato A, Pegoretti A, Kolarik J (2010) Nonlinear tensile creep of linear low density polyethylene/fumed silica nanocomposites: time-strain superposition and creep prediction. Polym Compos 31:1947–1955

    Article  CAS  Google Scholar 

  13. Gilman JW (1999) Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Appl Clay Sci 15(1–2):31–49

    Article  CAS  Google Scholar 

  14. Kiliaris P, Papaspyrides CD (2010) Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy. Prog Polym Sci 35:902–958

    Article  CAS  Google Scholar 

  15. Costantino U, Gallipoli A, Nocchetti M, Camino G, Bellucci F, Frache A (2005) New nano-composites constituted of polyethylene and organically modified znal-hydrotalcites. Polym Degrad Stab 90:586–590

    Article  CAS  Google Scholar 

  16. Costantino U, Montanari F, Nocchetti M, Canepa F, Frache A (2007) Preparation and characterization of hydrotalcite/carboxy-adamantane intercalation compounds as fillers of polymeric nanocomposites. J Mater Chem 17:1079–1086

    Article  CAS  Google Scholar 

  17. Lu H, Hu Y, Xiao J, Kong Q, Chen Z, Fan W (2005) The influence of irradiation on morphology evolution and flammability properties of maleated polyethylene/clay nanocomposite. Mater Lett 59:648–651

    Article  CAS  Google Scholar 

  18. Dorigato A, Pegoretti A, Penati A (2010) Linear low-density polyethylene/silica micro- and nanocomposites: dynamic rheological measurements and modelling. Expr Pol Lett 4(2):115–129

    Article  CAS  Google Scholar 

  19. Dorigato A, Fambri L, Pegoretti A, Slouf M, Kolarik J (2011) Cycloolefin copolymer (coc)/fumed silica nanocomposites. J Appl Polym Sci 119:3393–3402

    Article  CAS  Google Scholar 

  20. Dorigato A, Pegoretti A (2010) Tensile creep behaviour of polymethylpentene/silica nanocomposites. Polym Int 59:719–724

    CAS  Google Scholar 

  21. Chrissafis K, Paraskevopoulos KM, Pavlidou E, Bikiaris D (2009) Thermal degradation mechanism of hdpe nanocomposites containing fumed silica nanoparticles. Thermochim Acta 485:65–71

    Article  CAS  Google Scholar 

  22. Barus S, Zanetti M, Lazzari M, Costa L (2009) Preparation of polymeric hybrid nanocomposites based on pe and nanosilica. Polymer 50:2595–2600

    Article  CAS  Google Scholar 

  23. Dorigato A, Pegoretti A, Frache A (2012) Thermal stability of high density polyethylene–fumed silica nanocomposites. J Therm Anal Calorim 109:863–873

    Article  CAS  Google Scholar 

  24. Thompson MR, Yeung KK (2006) Recyclability of a layered silicate-thermoplastic olefin elastomer nanocomposite. Polym Degrad Stab 91(10):2396–2407

    Article  CAS  Google Scholar 

  25. Chow WS (2008) Cyclic extrusion of poly(butylene terephthalate)/organo-montmorillonite nanocomposites: thermal and mechanical retention properties. J Appl Polym Sci 110:1642–1648

    Article  CAS  Google Scholar 

  26. Goitisolo I, Equiazabal JI, Nazabal J (2008) Effects of reprocessing on the structure and properties of polyamide 6 nanocomposites. Polym Degrad Stab 93:1747–1752

    Article  CAS  Google Scholar 

  27. Karahaliou EK, Tarantili PA (2009) Preparation of poly(acrylonitrile–butadiene–styrene)/montmorillonite nanocomposites and degradation studies during extrusion reprocessing. J Appl Polym Sci 113:2271–2281

    Article  CAS  Google Scholar 

  28. Touati N, Kaci M, Bruzaud S, Grohens Y (2011) The effects of reprocessing cycles on the structure and properties of isotactic polypropylene/cloisite 15a nanocomposites. Polym Degrad Stab 96(6):1064–1073

    Article  CAS  Google Scholar 

  29. Kaci M, Remili C, Benhamida A, Bruzaud S, Grohens Y (2012) Recyclability of polystyrene/clay nanocomposites. Mol Cryst Liq Cryst 556:94–106

    Article  CAS  Google Scholar 

  30. Dorigato A, D’Amato M, Pegoretti A (2012) Thermo-mechanical properties of high density polyethylene—fumed silica nanocomposites: effect of filler surface area and treatment. J Polym Res 19:9889–9899

    Article  Google Scholar 

  31. Dorigato A, Pegoretti A (2012) Fracture behaviour of linear low density polyethylene – fumed silica composites. Eng Fract Mech 79(1):213–224

    Article  Google Scholar 

  32. Mark HF (2004) Encyclopedia of polymer science and technology, 3rd edn. Wiley, New York

    Google Scholar 

  33. Gupta RK (2000) Polymer and composite rheology. Dekker, New York

    Google Scholar 

  34. Barabas K, Iring M, Kelen T (1976) Study of the thermal oxidation of polyolefins. V. Volatile products in the thermal oxidation of polyethylene. J Polym Sci 57:65–71

    CAS  Google Scholar 

  35. Bikiaris D, Prinos J, Panayiotou C (1997) Effect of eaa and starch on the thermooxidative degradation of ldpe. Polym Degrad Stab 56:1–9

    Article  CAS  Google Scholar 

  36. Bikiaris D, Prinos J, Perrier C, Panayiotou C (1997) Thermoanalytical study of the effect of eaa and starch on the thermo-oxidative degradation of ldpe. Polym Degrad Stab 57:313–324

    Article  CAS  Google Scholar 

  37. Eriksson E, Johansson E, Kettaneh-Wold N (2001) Multi- and megavariate data analysis principles and applications. Umetrics Academy, New York

    Google Scholar 

  38. Holmstrom A, Sorvik E (1970) Thermal degradation of polyethylene in a nitrogen atmosphere of low oxygen content: I. Changes in molecular weight distribution. J Chromatogr 53:95–108

    Article  CAS  Google Scholar 

  39. Gugumus F (2000) Physico-chemical aspects of polyethylene processing in an open mixer6. Discussion of hydroperoxide formation and decomposition. Polym Degrad Stab 68:337–352

    Article  CAS  Google Scholar 

  40. Ajayan PM, Schadler LS (2003) Nanocomposite science and technology. Wiley-VCH, Weinheim

    Book  Google Scholar 

  41. Naveau E, Dominkovics Z, Detrembleur C, Jerome C, Harim J, Renner K, Alexandre M, Pukanszky B (2011) Effect of clay modification on the structure and mechanical properties of polyamide-6 nanocomposites. Eur Polym J 47(1):5–15

    Article  CAS  Google Scholar 

  42. Silverstein RM, Bussler GC, Morril TC (1981) Spectroscopic identification of of organic compounds. Wiley, New York

    Google Scholar 

  43. Jing X, Chen E, Me E (1992) Applied directory of infrared-photoacustic spectroscopy. Tjanjin Science and Technology Press, Tjanjin

    Google Scholar 

  44. Holmstrom A, Sorvik E (1974) Thermal degradation of polyethylene in a nitrogen atmosphere of low oxygen content. Iii. Structural changes occurring in low-density polyethylene at oxygen contents below 1.2 %. J Appl Polym Sci 18:3153–3158

    Article  CAS  Google Scholar 

  45. Holmstrom A, Sorvik EM (1978) Thermooxidative degradation of polyethylene. I and ii. Structural changes occurring in low-density polyethylene, high-density polyethylene, and tetratetracontane heated in air. J Polym Sci Part A: Polym Chem 16:2555–2586

    Article  CAS  Google Scholar 

  46. La Mantia FP, Dintcheva NT, Scaffaro R, Marino R (2008) Morphology and properties of polyethylene/clay nanocomposite drawn fibers. Macromol Mater Eng 293:83–91

    Article  Google Scholar 

  47. Ruan S, Gao P, Yu TX (2006) Ultra-strong gel-spun uhmwpe fibers reinforced using multiwalled carbon nanotubes. Polymer 47:1604–1611

    Article  CAS  Google Scholar 

  48. Zhang Y, Yu J, Zhou C, Chen L, Hu Z (2010) Preparation, morphology, and adhesive and mechanical properties of ultrahigh-molecular-weight polyethylene/sio2 nanocomposite fibers. Polym Compos 31:684–690

    CAS  Google Scholar 

  49. Dorigato A, Dzenis Y, Pegoretti A (2012) On the reinforcement mechanism in particulate nanocomposites. Mech Mater (in press)

  50. Dorigato A, Dzenis Y, Pegoretti A (2011) Nanofiller aggregation as reinforcing mechanism in nanocomposites. Procedia Eng 10:894–899

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Mr. Umberto Saccoman is gratefully acknowledged for his valuable support to the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Dorigato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorigato, A., Pegoretti, A. (Re)processing effects on linear low-density polyethylene/silica nanocomposites. J Polym Res 20, 92 (2013). https://doi.org/10.1007/s10965-013-0092-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0092-x

Keywords

Navigation