Skip to main content
Log in

Synthesis and characterization of Q-PEO-b-PVBC and Q-PEO-b-(PVBC-grad-PS) combined RAFT polymerization and post-polymerization quaternization

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Well defined amphiphilic block copolymers PEO-b-PVBC and PEO-b-(PVBC-grad-PS) were successfully synthesized via RAFT polymerization with PEO Macro-CTA as RAFT agent, AIBN as initiator, 4-vinylbenzyl chloride as monomer or 4-vinylbenzyl chloride and styrene as comonomers. The PEO Macro-CTA were synthesized through two steps. The degree of capping efficiency for PEO Macro-CTA can be increased to more than 80 % by changing the reaction conditions. Double hydrophilic block copolymers Q-PEO-b-PVBC was obtained by the quaternization of PEO-b-PVBC with triethylamine. PVBC-co-PS was synthesized via RAFT polymerization using 2-(ethoxycarbonyl) prop-2-yl dithiobenzoate as RAFT agent. The distributions of VBC and St units in the copolymers were investigated. The high reactivity of polymeric terminal radicals towards VBC in this system (rVBC = 1.50 and rSt = 0.61) resulted in the spontaneous formation of gradient copolymers. After quaternization of the PEO-b-(PVBC-grad-PS), the novel macromolecular architecture were obtained, which was consisted of the total hydrophilic block PEO and cationic amphiphilic gradient copolymer block.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Riess G (2003) Micellization of block copolymers. Prog Polym Sci 28(7):1107–1170. doi:10.1016/s0079-6700(03)00015-7

    Article  CAS  Google Scholar 

  2. Hamley IW (2003) Nanotechnology with soft materials. Angew Chem Int Ed 42(15):1692–1712. doi:10.1002/ange.200200546

    Article  CAS  Google Scholar 

  3. Hamley IW (2003) Nanostructure fabrication using block copolymers. Nanotechnology 14(10):R39–R54. doi:10.1088/0957-4484/14/10/201

    Article  CAS  Google Scholar 

  4. Zhang L, Eisenberg A (1995) Multiple morphologies of “crew-cut” aggregates of polystyrene-b-poly (acrylic acid) block copolymers. Science 268(5218):1728

    Article  CAS  Google Scholar 

  5. Yu Y, Zhang L, Eisenberg A (1998) Morphogenic effect of solvent on crew-cut aggregates of apmphiphilic diblock copolymers. Macromolecules 31(4):1144–1154. doi:10.1021/ma971254g

    Article  CAS  Google Scholar 

  6. Zhang L, Eisenberg A (1996) Multiple morphologies and characteristics of “crew-cut” micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions. J Am Chem Soc 118(13):3168–3181. doi:10.1021/ja953709s

    Article  CAS  Google Scholar 

  7. Discher DE, Eisenberg A (2002) Polymer vesicles. Science 297(5583):967–973. doi:10.1126/science.1074972

    Article  CAS  Google Scholar 

  8. Kim JK, Yang SY, Lee Y, Kim Y (2010) Functional nanomaterials based on block copolymer self-assembly. Prog Polym Sci 35(11):1325–1349. doi:10.1016/j.progpolymsci.2010.06.002

    Article  CAS  Google Scholar 

  9. Szwarc M, Levy M, Milkovich R (1956) Polymerization initiated by electron transfer to monomer. A new method of formation of block polymers1. J Am Chem Soc 78(11):2656–2657

    Article  CAS  Google Scholar 

  10. Hawker CJ, Bosman AW, Harth E (2001) New polymer synthesis by nitroxide mediated living radical polymerizations. Chem Rev 101(12):3661–3688. doi:10.1021/cr990119u

    Article  CAS  Google Scholar 

  11. Moad G, Rizzardo E, Thang SH (2008) Toward living radical polymerization. Acc Chem Res 41(9):1133–1142. doi:10.1021/ar800075n

    Article  CAS  Google Scholar 

  12. Kamigaito M, Ando T, Sawamoto M (2001) Metal-catalyzed living radical polymerization. Chem Rev 101(12):3689–3746. doi:10.1021/cr9901182

    Article  CAS  Google Scholar 

  13. Matyjaszewski K, Xia J (2001) Atom transfer radical polymerization. Chem Rev 101(9):2921–2990. doi:10.1021/cr940534g

    Article  CAS  Google Scholar 

  14. Braunecker WA, Matyjaszewski K (2007) Controlled/living radical polymerization: features, developments, and perspectives. Prog Polym Sci 32(1):93–146. doi:10.1016/j.progpolymsci.2006.11.002

    Article  CAS  Google Scholar 

  15. Moad G, Rizzardo E, Thang SH (2008) Radical addition-fragmentation chemistry in polymer synthesis. Polymer 49(5):1079–1131. doi:10.1016/j.polymer.2007.11.020

    Article  CAS  Google Scholar 

  16. Moad G, Rizzardo E, Thang SH (2009) Living radical polymerization by the RAFT process - a second update. Aust J Chem 62(11):1402–1472. doi:10.1071/ch09311

    Article  CAS  Google Scholar 

  17. Azzam T, Eisenberg A (2006) Control of vesicular morphologies through hydrophobic block length. Angew Chem Int Ed 45(44):7443–7447. doi:10.1002/anie.200602897

    Article  Google Scholar 

  18. Bang J, Kim SH, Drockenmuller E, Misner MJ, Russell TP, Hawker CJ (2006) Defect-free nanoporous thin films from ABC triblock copolymers. J Am Chem Soc 128(23):7622–7629. doi:10.1021/ja0608141

    Article  CAS  Google Scholar 

  19. Deng YH, Yu T, Wan Y, Shi YF, Meng Y, Gu D, Zhang LJ, Huang Y, Liu C, Wu XJ, Zhao DY (2007) Ordered mesoporous silicas and carbons with large accessible pores templated from amphiphilic diblock copolymer poly(ethylene oxide)-b-polystyrene. J Am Chem Soc 129(6):1690–1697. doi:10.1021/ja067379v

    Article  CAS  Google Scholar 

  20. Cölfen H (2001) Double-hydrophilic block copolymers: synthesis and application as novel surfactants and crystal growth modifiers. Macromol Rapid Commun 22(4):219–252

    Article  Google Scholar 

  21. Nakashima K, Bahadur P (2006) Aggregation of water-soluble block copolymers in aqueous solutions: recent trends. Adv Colloid Interface Sci 123:75–96

    Article  Google Scholar 

  22. Du X, Tan Y, Wang H, Zhang L, Ren X (2011) Synthesis, characterization and solution properties of a double-hydrophilic multiblock copolymer with sulfonic groups. J Polym Res 18(4):753–762. doi:10.1007/s10965-010-9472-7

    Article  CAS  Google Scholar 

  23. Lutz J-F (2006) Solution self-assembly of tailor-made macromolecular building blocks prepared by controlled radical polymerization techniques. Polym Int 55(9):979–993. doi:10.1002/pi.2058

    Article  CAS  Google Scholar 

  24. Lee RS, Huang YT (2010) Synthesis and characterization of amphiphilic triblock-graft PEG-(b-P alpha N3CL-g-alkyne)(2) degradable copolymers. J Polym Res 17(5):697–706. doi:10.1007/s10965-009-9358-8

    Article  CAS  Google Scholar 

  25. Miao Q, Jin Y, Dong Y, Cao ZF, Zhang BA (2010) Surface behavior and micelle morphology of novel nonionic polyurethane bolaform amphiphilic block copolymers. J Polym Res 17(6):911–921. doi:10.1007/s10965-009-9383-7

    Article  CAS  Google Scholar 

  26. Wang W-P, You Y-Z, Hong C-Y, Xu J, Pan C-Y (2005) Synthesis of comb-shaped copolymers by combination of reversible addition–fragmentation chain transfer polymerization and cationic ring-opening polymerization. Polymer 46(22):9489–9494. doi:10.1016/j.polymer.2005.07.037

    Article  CAS  Google Scholar 

  27. Shi Y, Fu Z, Yang W (2006) Synthesis of comb-like polystyrene with poly (N-phenyl maleimide-alt-p-chloromethyl styrene) as macroinitiator. J Polym Sci A Polym Chem 44(6):2069–2075

    Article  CAS  Google Scholar 

  28. Jaymand M (2011) Synthesis and characterization of well-defined poly (4-chloromethyl styrene-g-4-vinylpyridine)/TiO(2) nanocomposite via ATRP technique. J Polym Res 18(6):1617–1624. doi:10.1007/s10965-011-9566-x

    Article  CAS  Google Scholar 

  29. Burguière C, Pascual S, Coutin B, Polton A, Tardi M, Charleux B, Matyjaszewski K, Vairon JP (2000) Amphiphilic block copolymers prepared via controlled radical polymerization as surfactants for emulsion polymerization. In: Wiley Online Library, pp 39-44

  30. Save M, Manguian M, Chassenieux C, Charleux B (2005) Synthesis by RAFT of amphiphilic block and comblike cationic copolymers and their use in emulsion polymerization for the electrosteric stabilization of latexes. Macromolecules 38(2):280–289. doi:10.1021/ma048487+

    Article  CAS  Google Scholar 

  31. Jaeger W, Bohrisch J, Laschewsky A (2010) Synthetic polymers with quaternary nitrogen atoms–synthesis and structure of the most used type of cationic polyelectrolytes. Prog Polym Sci 35(5):511–577. doi:10.1016/j.progpolymsci.2010.01.002

    Article  CAS  Google Scholar 

  32. Peng Z, Wang D, Liu X, Tong Z (2007) RAFT synthesis of a water-soluble triblock copolymer of poly(styrenesulfonate)-b-poly(ethylene glycol)-b-poly(styrenesulfonate) using a macromolecular chain transfer agent in aqueous solution. J Polym Sci A Polym Chem 45(16):3698–3706. doi:10.1002/pola.22119

    Article  CAS  Google Scholar 

  33. Zhao J, Zhang G, Pispas S (2009) Morphological transitions in aggregates of thermosensitive poly(ethylene oxide)-b-poly(N-isopropylacrylamide) block copolymers prepared via RAFT polymerization. J Polym Sci A Polym Chem 47(16):4099–4110. doi:10.1002/pola.23470

    Article  CAS  Google Scholar 

  34. Hong CY, You YZ, Pan CY (2004) Synthesis and characterization of well-defined diblock and triblock copolymers of poly(N-isopropylacrylamide) and poly(ethylene oxide). J Polym Sci A Polym Chem 42(19):4873–4881. doi:10.1002/pola.20248

    Article  CAS  Google Scholar 

  35. Yan J, Ji W, Chen E, Li Z, Liang D (2008) Association and aggregation behavior of poly(ethylene oxide)-b-poly (N-isopropylacrylamide) in aqueous solution. Macromolecules 41(13):4908–4913. doi:10.1021/ma7026726

    Article  CAS  Google Scholar 

  36. Walther A, Millard P-E, Goldmann AS, Lovestead TM, Schacher F, Barner-Kowollik C, Müller AHE (2008) Bis-hydrophilic block terpolymers via RAFT polymerization: toward dynamic micelles with tunable corona properties. Macromolecules 41(22):8608–8619. doi:10.1021/ma801215q

    Article  CAS  Google Scholar 

  37. Chong YK, Krstina J, Le TPT, Moad G, Postma A, Rizzardo E, Thang SH (2003) Thiocarbonylthio compounds S=C(Ph)S-R in free radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization). role of the free-radical leaving group (R). Macromolecules 36(7):2256–2272. doi:10.1021/ma020882h

    Article  CAS  Google Scholar 

  38. Hong CY, You YZ, Pan CY (2006) Functionalized multi-walled carbon nanotubes with poly(N-(2-hydroxypropyl)methacrylamide) by RAFT polymerization. J Polym Sci A Polym Chem 44(8):2419–2427. doi:10.1002/pola.21341

    Article  CAS  Google Scholar 

  39. Kondo S, Ohtsuka T, Ogura K, Tsuda K (1979) Convenient synthesis and free-radical copolymerization of p-chloromethylstyrene. J Macromol Sci Chem 13(6):767–775

    Article  CAS  Google Scholar 

  40. Mayo FR, Lewis FM (1944) Copolymerization. I. A basis for comparing the behavior of monomers in copolymerization; the copolymerization of styrene and methyl methacrylate. J Am Chem Soc 66(9):1594–1601. doi:10.1021/ja01237a052

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, Z., Fu, Z., Shi, Y. et al. Synthesis and characterization of Q-PEO-b-PVBC and Q-PEO-b-(PVBC-grad-PS) combined RAFT polymerization and post-polymerization quaternization. J Polym Res 19, 9953 (2012). https://doi.org/10.1007/s10965-012-9953-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-9953-y

Keywords

Navigation