Skip to main content
Log in

Synthesis of poly(N-isopropylacrylamide-b-N-vinylcarbazole) copolymers via RAFT polymerization and its stimuli responsive morphology in aqueous media

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Here, we report the successful synthesis of series of stimuli responsive amphiphilic diblock copolymers (SRABCs) poly(N-isopropylacrylamide-b-N-vinylcarbazole) [poly(NIPAAm-b-NVK)] through reversible addition fragmentation chain transfer (RAFT) polymerization. Copolymers with fixed hydrophilic [poly(NIPAAm)] block length and variable (with three different) hydrophobic [poly(NVK)] block lengths were synthesized and the block length ratio was confirmed from their molecular weight data. The self-assembly nature of synthesized block copolymers was confirmed by determining critical micelle concentration (CMC). Self-assembled block copolymers showed rice-grain like morphology for copolymers having equivalent hydrophobic/hydrophilic chain length but in case of block copolymers having smaller and bigger hydrophobic chain length with respect to hydrophilic chain length displayed vesicular morphology. The thermo and pH responsiveness of the block copolymers was found to be influenced by variation in length and chemical composition of the blocks. Due to their thermo and pH responsiveness resulted self-assembled structures underwent morphology transitions from vesicular and rice grain like to micellar structure in aqueous medium. The probable applications of the studied stimuli responsive amphiphilic diblock copolymers can be found in the nanotechnology and biotechnology are indicated.

Synthesis, self-assembly and stimuli responsiveness of poly(NIPAAm-b-NVK) copolymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hong L, Zhang Z, Zhang Y, Zhang W (2014) Synthesis and self-assembly of stimuli-responsive amphiphilic block copolymers based on polyhedral oligomeric silsesquioxane. J Polym Sci Part A Polym Chem 52(18):2669–2683

    Article  CAS  Google Scholar 

  2. Cai H, Jiang G, Shen Z, Fan X (2013) Solvent-induced hierarchical self-assembly of amphiphilic PEG (Gm)-b-PS dendritic-linear block copolymers. Soft Matter 9(47):11398–11404

    Article  CAS  Google Scholar 

  3. Mai Y, Eisenberg A (2012) Self-assembly of block copolymers. Chem Soc Rev 41(18):5969–5985

    Article  CAS  Google Scholar 

  4. Zhu J, Jiang W (2005) Self-assembly of ABC triblock copolymer into giant segmented wormlike micelles in dilute solution. Macromolecules 38(22):9315–9323

    Article  CAS  Google Scholar 

  5. Savic R, Luo L, Eisenberg A, Maysinger D (2003) Micellar nanocontainers distribute to defined cytoplasmic organelles. Science 300:615–618

    Article  CAS  Google Scholar 

  6. Wu H, Dong J, Li C, Liu Y, Feng N, Xu L, Zhan X, Yang H, Wang G (2013) Multi-responsive nitrobenzene-based amphiphilic random copolymer assemblies. Chem Comm 49(34):3516–3518

    Article  CAS  Google Scholar 

  7. Zhou YN, Zhang Q, Luo ZH (2014) A light and pH dual-stimuli-responsive block copolymer synthesized by copper (0)-mediated living radical polymerization: solvatochromic, isomerization, and “schizophrenic” behaviours. Langmuir 30(6):1489–1499

    Article  CAS  Google Scholar 

  8. Luo C, Liu Y, Li Z (2010) Thermo-and pH-responsive polymer derived from methacrylamide and aspartic acid. Macromolecules 43(19):8101–8108

    Article  CAS  Google Scholar 

  9. Du J, Armes SP (2005) pH-responsive vesicles based on a hydrolytically self-cross-linkable copolymer. J Am Chem Soc 127(37):12800–12801

    Article  CAS  Google Scholar 

  10. Oishi M, Kataoka K, Nagasaki Y (2006) pH-responsive three-layered PEGylated polyplex micelle based on a lactosylated ABC triblock copolymer as a targetable and endosome-disruptive nonviral gene vector. Bioconjug Chem 17(3):677–688

    Article  CAS  Google Scholar 

  11. Nakayama M, Okano T, Miyazaki T, Kohori F, Sakai K, Yokoyama M (2006) Molecular design of biodegradable polymeric micelles for temperature-responsive drug release. J Control Release 115(1):46–56

    Article  CAS  Google Scholar 

  12. Li Y, Lokitz BS, McCormick CL (2006) Thermally responsive vesicles and their structural “locking” through polyelectrolyte complex formation. Angw Chem Inter Edi 45(35):5792–5795

    Article  CAS  Google Scholar 

  13. Ma N, Li Y, Xu H, Wang Z, Zhang X (2009) Dual redox responsive assemblies formed from diselenide block copolymers. J Am Chem Soc 132(2):442–443

    Article  Google Scholar 

  14. Zhao Y (2009) Photocontrollable block copolymer micelles: what can we control? J Mat Chem 19(28):4887–4895

    Article  CAS  Google Scholar 

  15. Li Y, Tong R, Xia H, Zhang H, Xuan J (2010) High intensity focused ultrasound and redox dual responsive polymer micelles. Chem Comm 46(41):7739–7741

    Article  CAS  Google Scholar 

  16. Klaikherd A, Nagamani C, Thayumanavan S (2009) Multi-stimuli sensitive amphiphilic block copolymer assemblies. J Am Chem Soc 131(13):4830–4838

    Article  CAS  Google Scholar 

  17. Zhang L, Guo R, Yang M, Jiang X, Liu B (2007) Thermo and pH dual-responsive nanoparticles for anti-cancer drug delivery. Adv Mat 19(19):2988–2992

    Article  CAS  Google Scholar 

  18. Du J, O'Reilly RK (2009) Advances and challenges in smart and functional polymer vesicles. Soft Matter 5(19):3544–3561

    Article  CAS  Google Scholar 

  19. Antonietti M, Forster S (2003) Vesicles and liposomes: a self-assembly principle beyond lipids. Adv Mat 15(16):1323–1333

    Article  CAS  Google Scholar 

  20. Le Meins JF, Schatz C, Lecommandoux S, Sandre O (2013) Hybrid polymer/lipid vesicles: state of the art and future perspectives. Mater Today 16(10):397–402

    Article  Google Scholar 

  21. Jiang W, Zhou Y, Yan D (2015) Hyperbranched polymer vesicles: from self-assembly, characterization, mechanisms, and properties to applications. Chem Soc Rev 44(12):3874–3889

    Article  CAS  Google Scholar 

  22. Li MH, Keller P (2009) Stimuli-responsive polymer vesicles. Soft Matter 5(5):927–937

    Article  CAS  Google Scholar 

  23. Discher BM, Won YY, Ege DS, Lee JC, Bates FS, Discher DE, Hammer DA (1999) Polymersomes: tough vesicles made from diblock copolymers. Science 284:1143–1146

    Article  CAS  Google Scholar 

  24. Azzam T, Eisenberg A (2006) Control of vesicular morphologies through hydrophobic block length. Angw Chem Inter Edi 45(44):7443–7447

    Article  Google Scholar 

  25. Oh H, Javvaji V, Yaraghi NA, Abezgauz L, Danino D, Raghavan SR (2013) Light-induced transformation of vesicles to micelles and vesicle-gels to sols. Soft Matter 9(48):11576–11584

    Article  CAS  Google Scholar 

  26. Lovett JR, Warren NJ, Armes SP, Smallridge MJ, Cracknell RB (2016) Order–Order Morphological Transitions for Dual Stimulus Responsive Diblock Copolymer Vesicles. Macromolecules 49(3):1016–1025

    Article  CAS  Google Scholar 

  27. Tanner P, Baumann P, Enea R, Onaca O, Palivan C, Meier W (2011) Polymeric vesicles: from drug carriers to nanoreactors and artificial organelles. Acct Chem Res 44(10):1039–1049

    Article  CAS  Google Scholar 

  28. Feng A, Yuan J (2014) Smart Nanocontainers: Progress on Novel Stimuli-Responsive Polymer Vesicles. Macromol Rapd Comm 35(8):767–779

    Article  CAS  Google Scholar 

  29. Meng F, Zhong Z, Feijen J (2009) Stimuli-responsive polymersomes for programmed drug delivery. Biomacromolecules 10(2):197–209

    Article  CAS  Google Scholar 

  30. Gandhi A, Paul A, Sen SO, Sen KK (2015) Studies on thermoresponsive polymers: Phase behaviour, drug delivery and biomedical applications. Asian J Pharm Sci 10(2):99–107

    Article  Google Scholar 

  31. Schild HG (1992) Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17(2):163–249

    Article  CAS  Google Scholar 

  32. He Y, Zhang Y, Xiaom Y, Lang M (2010) Dual-response nanocarrier based on graft copolymers with hydrazone bond linkages for improved drug delivery. Coll and Surf B Biointerf 80(2):145–154

    Article  CAS  Google Scholar 

  33. Maleki A, Zhu K, Pamies R, Schmidt RR, Kjøniksen AL, Karlsson G, Cifre JG, Torre JG, Nyström B (2011) Effect of polyethylene glycol (PEG) length on the association properties of temperature-sensitive amphiphilic triblock copolymers (PNIPAAMm-b-PEGn-b-PNIPAAMm) in aqueous solution. Soft Matter 7(18):8111–8119

    Article  CAS  Google Scholar 

  34. Wei H, Zhang X, Cheng C, Cheng SX, Zhuo RX (2007) Self-assembled, thermosensitive micelles of a star block copolymer based on PMMA and PNIPAAm for controlled drug delivery. Biomaterials 28(1):99–107

    Article  CAS  Google Scholar 

  35. Siauw M, FitzGerald PA, Hawkett BS, Perrier S (2013) Thermoresponsive behaviour of amphiphilic diblock co-oligomers of ethylene glycol and styrene in aqueous solution. Soft Matter 9(29):7007–7015

    Article  CAS  Google Scholar 

  36. Roy D, Cambre JN, Sumerlin BS (2009) Triply-responsive boronic acid block copolymers: solution self-assembly induced by changes in temperature, pH, or sugar concentration. Chem Comm 16:2106–2108

    Article  Google Scholar 

  37. Banerjee R, Dhara D (2014) Functional group-dependent self-assembled nanostructures from thermo-responsive triblock copolymers. Langmuir 30(14):4137–4146

    Article  CAS  Google Scholar 

  38. York AW, Kirkland SE, McCormick CL (2008) Advances in the synthesis of amphiphilic block copolymers via RAFT polymerization: stimuli-responsive drug and gene delivery. Adv Drug Del Rev 60(9):1018–1036

    Article  CAS  Google Scholar 

  39. Moad G, Rizzardo E, Thang SH (2005) Living Radical Polymerization by the RAFT Process. Aust J Chem 58:379–410

    Article  CAS  Google Scholar 

  40. Kutcherlapati SNR, Koyilapu R, Boddu UMR, Datta D, Perali RS, Swamy MJ, Jana T (2017) Glycopolymer-Grafted Nanoparticles: Synthesis Using RAFT Polymerization and Binding Study with Lectin. Macromolecules 50(18):7309–7320

    Article  CAS  Google Scholar 

  41. Bian K, Cunningham MF (2005) Nitroxide-mediated living radical polymerization of 2-hydroxyethyl acrylate and the synthesis of amphiphilic block copolymers. Macromolecules 38(3):695–701

    Article  CAS  Google Scholar 

  42. Muhlebach A, Gaynorand SG, Matyjaszewski K (1998) Synthesis of amphiphilic block copolymers by atom transfer radical polymerization (ATRP). Macromolecules 31(18):6046–6052

    Article  Google Scholar 

  43. Kang Y, Lu A, Ellington A, Jewett MC, O’Reilly RK (2013) Effect of complementary nucleobase interactions on the copolymer composition of RAFT copolymerizations. ACS Macro Lett 2(7):581–586

    Article  CAS  Google Scholar 

  44. Yeole N, Kutcherlapati SNR, Jana T (2014) Tunable core-shell nanoparticles: macro-RAFT mediated one pot emulsion polymerization. RSC Adv 4(5):2382–2388

    Article  CAS  Google Scholar 

  45. Bhattacharjee S, Bong D (2011) Protein-polymer grafts via a soy protein derived macro-RAFT chain transfer agent. J Polym and Env 19(1):203–208

    Article  CAS  Google Scholar 

  46. Kutcherlapati SNR, Yeole N, Gadi MR, Perali RS, Jana T (2017) RAFT mediated one-pot synthesis of glycopolymer particles with tunable core-shell morphology. Polym Chem 8(8):1371–1380

    Article  Google Scholar 

  47. Yeole N, Kutcherlapati SNR, Jana T (2015) Polystyrene-graphene oxide (GO) nanocomposite synthesized by interfacial interactions between RAFT modified GO and core-shell polymeric nanoparticles. J Colloid Interface Sci 443(1):137–142

    Article  CAS  Google Scholar 

  48. Lu H, Su F, Mei Q, Zhou X, Tian Y, Tian W, Johnson RH, Meldrum DR (2012) A series of poly [N-(2-hydroxypropyl) methacrylamide] copolymers with anthracene derived fluorophores showing aggregation induced emission properties for bioimaging. J Polym Sci Part A Polym Chem 50(5):890–899

    Article  CAS  Google Scholar 

  49. Shrivastava S, Matsuoka H (2014) Photoresponsive block copolymer: synthesis, characterization, and surface activity control. Langmuir 30(14):3957–3966

    Article  CAS  Google Scholar 

  50. Dan K, Bose N, Ghosh S (2011) Vesicular assembly and thermo-responsive vesicle-to-micelle transition from an amphiphilic random copolymer. Chem Comm 47(46):12491–12493

    Article  CAS  Google Scholar 

  51. Wei H, Yu CY, Chang C, Quan CY, Mo SB, Cheng SX, Zhang XZ, Zhuo RX (2008) Direct observation of time and temperature dependent transition from spherical micelles to vesicles. Chem Comm 38:4598–4600

    Article  Google Scholar 

  52. Kazuhiro N, Hideharu M (2013) Recent progress in controlled radical polymerization of N-vinyl monomers. Eurp Polym J 49(10):2808–2838

    Article  Google Scholar 

  53. Weidong Z, Wei Z, Zhengbiao Z, Zhenping C, Yingfeng T, Yansheng Q, Xiulin Z (2010) Thermo-responsive fluorescent micelles from amphiphilic A3B miktoarm star copolymers prepared via a combination of SET-LRP and RAFT polymerization. J Polym Sci Part A Polym Chem 48(19):4268–4278

    Article  Google Scholar 

Download references

Acknowledgements

KP gratefully acknowledge the DST, New Delhi, for providing INSPIRE Fellowship. Authors thank the UGC for providing facilities under Networking Centre at the School of Chemistry, University of Hyderabad, Hyderabad, India. We sincerely thank Centre for Nanotechnology, University of Hyderabad for allowing us to use the TEM facility.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tushar Jana or Dilip Hundiwale.

Electronic supplementary material

Supporting Information

Supporting information includes, critical micelle concentration (CMC) plots for P3 and P2 (Fig.S1 and S2); Nile Red encapsulation graph (Fig.S3) and Rhodamine 6G (R6G) encapsulation graph (Fig.S4). (DOCX 3364 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pawar, K., Kutcherlapati, S.N.R., Yeole, N. et al. Synthesis of poly(N-isopropylacrylamide-b-N-vinylcarbazole) copolymers via RAFT polymerization and its stimuli responsive morphology in aqueous media. J Polym Res 25, 91 (2018). https://doi.org/10.1007/s10965-018-1483-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1483-9

Keywords

Navigation