Skip to main content
Log in

The Upper Envelope of Positive Self-Similar Markov Processes

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We establish integral tests in connection with laws of the iterated logarithm at 0 and at +∞, for the upper envelope of positive self-similar Markov processes. Our arguments are based on the Lamperti representation and on the study of the upper envelope of the future infimum due to the author (see Pardo in Stoch. Stoch. Rep. 78:123–155, [2006]). These results extend laws of the iterated logarithm for Bessel processes due to Dvoretsky and Erdős (Proceedings of the Second Berkeley Symposium, [1951]) and stable Lévy processes with no positive jumps conditioned to stay positive due to Bertoin (Stoch. Process. Appl. 55:91–100, [1995]).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertoin, J.: On the local rate of growth of Lévy processes with no positive jumps. Stoch. Process. Appl. 55, 91–100 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bertoin, J.: Lévy Processes. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  3. Bertoin, J.: Random Coagulation and Fragmentation Processes. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  4. Bertoin, J., Caballero, M.E.: Entrance from 0+ for increasing semi-stable Markov processes. Bernoulli 8(2), 195–205 (2002)

    MATH  MathSciNet  Google Scholar 

  5. Bertoin, J., Yor, M.: The entrance laws of self-similar Markov processes and exponential functionals of Lévy processes. Potential Anal. 17(4), 389–400 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bertoin, J., Yor, M.: On the entire moments of self-similar Markov processes and exponential functionals of Lévy processes. Ann. Fac. Sci. Toulouse VI Ser. Math. 11(1), 33–45 (2002)

    MATH  MathSciNet  Google Scholar 

  7. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. Cambridge University Press, Cambridge (1989)

    MATH  Google Scholar 

  8. Birkner, M., Blath, J., Capaldo, M., Etheridge, A., Möhle, M., Schweinsber, J., Wakolbinger, A.: Alpha-stable branching and beta-coalescents. Electron. J. Probab. 10, 303–325 (2005)

    MathSciNet  Google Scholar 

  9. Caballero, M.E., Chaumont, L.: Weak convergence of positive self-similar Markov processes and overshoots of Lévy processes. Ann. Probab. 34, 1012–1034 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chaumont, L., Doney, R.: On Lévy processes conditioned to stay positive. Electron. J. Probab. 10, 948–961 (2005)

    MathSciNet  Google Scholar 

  11. Chaumont, L., Pardo, J.C.: The lower envelope of positive self-similar Markov processes. Electron. J. Probab. 11, 1321–1341 (2006)

    MATH  MathSciNet  Google Scholar 

  12. Chaumont, L., Kyprianou, A.E., Pardo, J.C.: Some explicit identities associated with positive self-similar Markov processes. Pré-publication No. 1168 du LMPA (2007)

  13. Duquesne, T., Le Gall, J.F.: Random trees, Lévy processes and spatial branching processes. Astérisque (2002)

  14. Dvoretzky, A., Erdös, P.: Some problems on random walk in space. In: Proceedings of the Second Berkeley Symposium. University of California Press, Berkeley (1951)

    Google Scholar 

  15. Fourati, S.: Inversion de l’espace du temps des processus de Lévy stables. Probab. Theory Relat. Fields 110, 2001–2015 (2006)

    Google Scholar 

  16. Gruet, J.C., Shi, Z.: The occupation time of Brownian motion in a ball. J. Theor. Probab. 2, 429–445 (1996)

    Article  MathSciNet  Google Scholar 

  17. Itô, K., McKean, H.P.: Diffusion Processes and their Sample Paths. Springer, Berlin (1965)

    MATH  Google Scholar 

  18. Khoshnevisan, D., Lewis, T.M., Li, W.V.: On the future infima of some transient processes. Probab. Theory Relat. Fields 99, 337–360 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kreel, N.: Self-similar branching Markov chains. Pré-publication No. 1167 du LMPA (2007)

  20. Krikun, M.: Local structure of random quadrangulations. Preprint (2006). Available http://arxiv.cvg/abs/math.PR/0512304

  21. Lamperti, J.: Semi-stable stochastic processes. Trans. Am. Math. Soc. 104, 62–78 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lamperti, J.: Semi-stable Markov processes. I. Z. Wahrscheinlichkeitstheorie Verw. Geb. 22, 205–225 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  23. Pardo, J.C.: On the future infimum of positive self-similar Markov processes. Stoch. Stoch. Rep. 78, 123–155 (2006)

    MATH  MathSciNet  Google Scholar 

  24. Sato, K.: Lévy processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  25. Watanabe, T.: Sample function behavior of increasing processes of class L. Probab. Theory Relat. Fields 104, 349–374 (1996)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Pardo.

Additional information

Research supported by a grant from CONACYT (Mexico).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pardo, J.C. The Upper Envelope of Positive Self-Similar Markov Processes. J Theor Probab 22, 514–542 (2009). https://doi.org/10.1007/s10959-008-0152-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-008-0152-z

Keywords

Mathematics Subject Classification (2000)

Navigation