Skip to main content
Log in

Optimal Control for a Parabolic–Hyperbolic Free Boundary Problem Modeling the Growth of Tumor with Drug Application

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we study two optimal control problems for a free boundary problem, which models tumor growth with drug application. This free boundary problem is a multicellular tumor spheroid model and includes five time-dependent partial differential equations. The tumor considered in this model consists of three kinds of cells: proliferative cells, quiescent cells and dead cells. Three different first-order hyperbolic equations are given, which describe the evolution of cells, and other two second-order parabolic equations describe the diffusions of nutrient (e.g., oxygen and glucose) and drug concentrations. Existence and uniqueness of optimal controls are also proved. We use tangent-normal cone techniques to obtain necessary conditions. Then, we employ the Ekeland variational principle to show that there exists unique optimal control for each optimal control problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jackson, T.L.: Vascular tumor growth and treatment: consequences of polyclonality, competition and dynamic vascular support. J. Math. Biol. 44, 201–226 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Jackson, T.L., Byrne, H.M.: A mathematical model to study the effects of drug resistance and vasculature on the response of solid tumors to chemotherapy. Math. Biosci. 164, 17–38 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Zhao, J.: A parabolic-hyperbolic free boundary problem modeling tumor growth with drug application. Electron. J. Differ. Eq. 2010, 1–18 (2010)

    Article  MathSciNet  Google Scholar 

  4. Cui, S., Wei, X.: Global existence for a parabolic-hyperbolic free boundary problem modelling tumor growth. Acta Math. Appl. Sinica (English Series) 21, 597–614 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Tao, Y.: A free boundary problem modeling the cell cycle and cell movement in multicellular tumor spheroids. J. Differ. Eq. 247, 49–68 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Khaitan, D., Chandna, S., Arya, M.B., Dwarakanath, B.S.: Establishment and characterization of multicellular spheroids from a human glioma cell line: implications for tumor therapy. J. Transl. Med. 4, 12–25 (2006)

    Article  Google Scholar 

  7. Chandrasekaran, S., King, M.R.: Gather round: in vitro tumor spheroids as improved models of in vivo tumors. J. Bioeng. Biomed. Sci. 2, e109 (2012)

    Article  Google Scholar 

  8. Zhang, X., de Milito, A., Olofsson, M.H., Gullbo, J., D’Arcy, P., Linder, S.: Targeting mitochondrial function to treat quiescent tumor cells in solid tumors. Int. J. Mol. Sci. 16, 27313–27326 (2015)

    Article  Google Scholar 

  9. Sutherland, R.M.: Cell and environment interactions in tumor microregions: the multicell spheroid model. Science 240, 177–184 (1988)

    Article  Google Scholar 

  10. de Araujo, A.L.A., de Magalhães, P.M.D.: Existence of solutions and optimal control for a model of tissue invasion by solid tumours. J. Math. Anal. Appl. 421, 842–877 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Anderson, A.R.A.: A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion. Math. Med. Biol. 22, 163–186 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Calzada, M.C., Fernández-Cara, E., Marín, M.: Optimal control oriented to therapy for a free-boundary tumor growth model. J. Theor. Biol. 325, 1–11 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Greenspan, H.P.: Models for the growth of a solid tumor by diffusion. Stud. Appl. Math. 51, 317–340 (1972)

    Article  MATH  Google Scholar 

  14. Greenspan, H.P.: On the growth and stability of cell cultures and solid tumors. J. Theor. Biol. 56, 229–242 (1976)

    Article  MathSciNet  Google Scholar 

  15. Byrne, H.M., Chaplain, M.A.J.: Growth of nonnecrotic tumors in the presence and absence of inhibitors. Math. Biosci. 130, 151–181 (1995)

    Article  MATH  Google Scholar 

  16. Tao, Y., Chen, M.: An elliptic-hyperbolic free boundary problem modelling cancer therapy. Nonlinearity 19, 419–440 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wu, Z., Yin, J., Wang, C.: Elliptic and Parabolic Equations. World Scientific, Singapore (2006)

  18. Ladyzenskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasi-Linear Equations of Parabolic Type. American Mathematical Society, Providence (1968)

    Google Scholar 

  19. Brezis, H.: Functional Analysis. Sobolev Spaces and Partial Differential Equations. Springer, New York (2011)

    MATH  Google Scholar 

  20. Barbu, V.: Mathematical Methods in Optimization of Differential Systems. Kluwer Academic Publishers, Dordrecht (1994)

    Book  MATH  Google Scholar 

  21. Barbu, V., Iannelli, M.: Optimal control of population dynamics. J. Optim. Theory Appl. 102, 1–14 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kurtz, D.S., Swartz, C.W.: Theories of Integration: the Integrals of Riemann, Lebesgue, Henstock-Kurzweil, and Mcshane. World Scientific, Singapore (2004)

Download references

Acknowledgements

The authors are very grateful to the editor and the referees for their valuable comments and suggestions which improved the original submission of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Eslahchi.

Additional information

Communicated by Emmanuel Trélat.

Appendix A

Appendix A

In this section, we provide some essential mathematical concepts, lemmas and theorems, which have been used in the mathematical analysis throughout the paper.

Definition A.1

Let \(R(t)~(0\le t\le T)\) be a positive continuous function; then we define

$$\begin{aligned} W_{p}^{2,1 }(Q_T^R ):=\left\{ u\in L^{p} (Q_T^R ) : \partial _x^\alpha \partial _t^k u\in L^{p} (Q_T^R ),~~ |\alpha |+2k\le 2\right\} , \end{aligned}$$

with the norm \(||u||_{{W_{p}^{2,1}} (Q_T^R ) }:=\displaystyle {\sum _{|\alpha |+2k\le 2}}||\partial _x^\alpha \partial _t^k u||_{L^{p} (Q_T^R )}\), where \(Q_T^R:=\Big \{(x,t)\in \mathbb {R}^{3}\times \mathbb {R}: |x|< R(t) ,0<t<T\Big \}.\)

Definition A.2

Let \(\Omega \subseteq \mathbb {R}^3\) be an open set and \(p>\dfrac{5}{2}\); then we define \(D_{p}(\Omega )\) the trace space of \(W_{p}^{2,1}(\Omega \times ]0,T[)\) at \(t=0\) as follows:

$$\begin{aligned} D_{p}(\Omega ):=\Big \{\varphi :\exists u\in W_{p}^{2,1}(\Omega \times ]0,T[)~s.t.~ u(., 0) = \varphi \Big \}, \end{aligned}$$

equipped with the norm \(||\varphi ||_{D_p (\Omega )} := \inf \Big \{T^{-\frac{1}{p}} ||u||_{W_{p}^{2,1}(\Omega \times ]0,T[)} : u\in W_{p}^{2,1} (\Omega \times ]0,T[),~ u(.,0)=\varphi \Big \}.\)

Lemma A.1

Assume that \(f\left( \rho ,\tau \right) ,~\psi (\rho ,\tau )\) and \(\varphi (\tau )\) are bounded continuous functions on \([0, 1] \times [0, T]\) and \(\ [0, T]\ (T>0)\), respectively, and let \(\overline{c}\) be a constant and \({c}_{ 0}\) be a function on [0, 1] such that \(c_0(\left| x\right| )\in D_p(B_1)\) for some \(p>5\), where \(B_1\) is a unit ball in \(\mathbb {R}^3 \). Then, the problem

$$\begin{aligned} \dfrac{\partial c }{\partial \tau }= & {} \dfrac{1}{{\rho }^2}\dfrac{\partial }{\partial \rho }\left( {\rho }^2\dfrac{\partial c }{\partial \rho }\right) +\varphi \left( \tau \right) \rho \dfrac{\partial c }{\partial \rho }+\psi \left( \rho ,\tau \right) c+f(\rho ,\tau ) ,\\ 0< & {} \rho<1,~ 0< \tau \le T,\\ \dfrac{\partial c}{\partial \rho }(0,\tau )= & {} 0,~~c \left( 1,\tau \right) =\overline{c},~~ 0<\tau \le T,~c \left( \rho ,0\right) =c_0(\rho ),~~ 0\le \rho \le 1, \end{aligned}$$

has a unique solution such that \(c(|x|,\tau )\in W^{2,1}_p(Q^1_T)\), where \(Q^1_T:=\Big \{(x,\tau )\in \mathbb {R}^{3}\times \mathbb {R}: |x|< 1,~0<\tau < T\Big \}\). Also there exists a positive constant \(\mu \) depending only on p,  T, \({||\psi ||}_{L^{ \infty }}\) and \({||\varphi ||}_{L^{\infty }}\) such that

$$\begin{aligned} {||c (|x|,\tau )||}_{W^{2,1}_p(Q^1_T)}\le \mu \left( \left| \overline{c }\right| +{\left| \left| {c }_0\left( |x|\right) \right| \right| }_{D_p\left( B_1\right) }+||f ||_{L^p}\right) , \end{aligned}$$
(64)

where \(\mu \) is bounded for T in any bounded set. Moreover, there exists a positive constant d such that

$$\begin{aligned} {||\partial _x^\beta c \big (|x|,\tau \big ) ||}_{L^{\infty }}\le s_1T^{\frac{1}{2}-\frac{5}{2p}} {||c (|x|,\tau )||}_{W^{2,1}_p\big (Q^1_T\big )}+s_2\delta ^{-1-\frac{5}{p}}||c \big (|x|,\tau \big )||_{L^p}, \end{aligned}$$
(65)

where \(|\beta |=1\) and \(\delta =\min \{d,\sqrt{T}\}\) and \(s_1\), \(s_2\) are positive constants, which depend on p. Also we have

$$\begin{aligned} {||c ||}_{L^{\infty }}\le e^{\mu _0T}\Big (\max \{\left| \overline{c }\right| +{\left| \left| {c }_0\right| \right| }_{L^{\infty }}\}+T||f ||_{L^\infty }\Big ), \end{aligned}$$
(66)

where \(\mu _0=0\) if \(\psi \left( \rho ,\tau \right) \le 0\) and \(\mu _0=\displaystyle \max _{\overline{Q^1_{T}}}\psi \) otherwise.

Proof

See [3, 4, 17, 18]. \(\square \)

Lemma A.2

Let \(z\left( \rho ,\tau \right) \) , \(h_{ij}(\rho ,\tau )\ (i, j=1,2,3)\) , \(g_i(\rho ,\tau )\ (i= 1, 2, 3)\) be bounded continuous functions on \([0, 1]\times [0, T]\), \(z\left( \rho ,\tau \right) \) be continuously differentiable with respect to \(\rho \) and \(z\left( 0,\tau \right) =z\left( 1,\tau \right) =0\). Then, for every \({\alpha }_0,\ {\beta }_0,\ {\gamma }_0\in \ C[0, 1]\), the problem

$$\begin{aligned} \dfrac{\partial \alpha }{\partial \tau }+z\left( \rho ,\tau \right) \dfrac{\partial \alpha }{\partial \rho }= & {} h_{11}\left( \rho ,\tau \right) \alpha +h_{12}\left( \rho ,\tau \right) \beta +h_{13}\left( \rho ,\tau \right) \gamma +g_1(\rho ,\tau ),\\ 0\le & {} \rho \le 1, \ 0<\tau \le T,\\ \dfrac{\partial \beta }{\partial \tau }+z\left( \rho ,\tau \right) \dfrac{\partial \beta }{\partial \rho }= & {} h_{21}\left( \rho ,\tau \right) \alpha +h_{22}\left( \rho ,\tau \right) \beta +h_{23}\left( \rho ,\tau \right) \gamma +g_2(\rho ,\tau ),\\ 0\le & {} \rho \le 1, \ 0<\tau \le T,\\ \dfrac{\partial \gamma }{\partial \tau }+z\left( \rho ,\tau \right) \dfrac{\partial \gamma }{\partial \rho }= & {} h_{31}\left( \rho ,\tau \right) \alpha +h_{32}\left( \rho ,\tau \right) \beta +h_{33}\left( \rho ,\tau \right) \gamma +g_3(\rho ,\tau ),\\ 0\le & {} \rho \le 1, \ 0<\tau \le T,\\ \alpha \left( \rho ,0\right)= & {} {\alpha }_0\left( \rho \right) ,\ \beta \left( \rho ,0\right) ={\beta }_0\left( \rho \right) ,\ \gamma \left( \rho ,0\right) ={\gamma }_0\left( \rho \right) ,~\ 0\le \rho \le 1, \end{aligned}$$

has a unique weak solution, which is continuous with respect to \((\rho ,\tau )\) and

$$\begin{aligned} {\Vert (\alpha ,\beta ,\gamma )\Vert }_{L^{\infty }}\le e^{TA_0\left( T\right) }\left( {\Vert ({\alpha }_0,{\beta }_0,{\gamma }_0)\Vert }_{L^{\infty }}+T{\Vert (g_1,g_2,g_3)\Vert }_{L^{\infty }}\right) , \end{aligned}$$

where \(A_0(T)=2{max \{{\Vert h_{ij}\Vert }_{L^{\infty }}i,j=1,2,3\}}.\) If \(h_{ij}(\rho ,\tau )\ (i, j=1, 2, 3)\) and \(g_{i}(\rho ,\tau )\ (i= 1, 2, 3)\) are continuously differentiable with respect to \(\rho \) and \({\alpha }_0,\ {\beta }_0,\ {\gamma }_0\in \ C^1[0, 1]\), then the weak solution of problem is a classical solution. Thus, we have

$$\begin{aligned} \left\| \left( \dfrac{\partial \alpha }{\partial \rho },\dfrac{\partial \beta }{\partial \rho },\dfrac{\partial \gamma }{\partial \rho }\right) \right\| _{L^{\infty }}\le & {} e^{\left( A_0\left( T\right) +A\left( T\right) \right) T}\Big (\left\| ({\alpha }_0',{\beta }_0',\gamma _0')\right\| _{L^{\infty }}\nonumber \\&+TA_1(T)e^{TA\left( T\right) }{\Vert ({\alpha }_0,{\beta }_0,{\gamma }_0)\Vert }_{L^{\infty }}\nonumber \\&+Te^{TA\left( T\right) }{\left\| \left( \dfrac{\partial g_1}{\partial \rho },\dfrac{\partial g_2}{\partial \rho },\dfrac{\partial g_3}{\partial \rho }\right) \right\| }_{L^{\infty }}\Big ), \end{aligned}$$
(67)

where \(A\left( T\right) ={\Vert \frac{\partial z}{\partial \rho }\Vert }_{L^{\infty }}, A_1(T)=2{max \Big \{{\Vert \frac{\partial h_{ij}}{\partial \rho } \Vert }_{L^{\infty }},~i,j=1,2,3\Big \}}.\)

Proof

See [3, 4]. \(\square \)

In the following theorem, the existence and uniqueness of the solution of (13)–(26) are proved.

Theorem A.1

Let assumptions AC and initial condition (26) be satisfied. Then, the problem (13)–(25) has a unique solution for \(t\ge 0\). And for every \(T>0\), \(R\left( t\right) \in C^1\left[ 0,T\right] ,\ C,\ W\in W^{2,1}_p\left( {Q^R_T}\right) \) for \(p>5\) and \(P,Q,D\in C\left( \overline{Q^R_T}\right) \). Moreover, we have

$$\begin{aligned} P\left( r,t\right) +Q\left( r,t\right) +D\left( r,t\right)= & {} N,~~ 0\le r\le R\left( t\right) ,\ t\ge 0,\\ p,q,d\in & {} C^1\left( [0,1]\times [0,T]\right) . \end{aligned}$$

Proof

Using Lemmas A.1 and A.2, similar to the proof of the main theorem of [3], the desired result can be obtained. \(\square \)

Definition A.3

[17, 19] Let \(0<\alpha <1\) and \(\Omega \subset \mathbb {R}^n\) be bounded. Then, \(f\in C^{\alpha ,\frac{\alpha }{2}}(\overline{\Omega }\times [0,T])\) iff there exists a positive constant C such that

$$\begin{aligned} |f(x_1,t_1)-f(x_2,t_2)|\le C\Big (|x_1-x_2|^2+|t_1-t_2|\Big )^{\frac{\alpha }{2}},~\forall x_1,x_2\in \overline{\Omega },~\forall t_1,t_2\in [0,T]. \end{aligned}$$

Furthermore, for any nonnegative integer k we define

$$\begin{aligned} C^{2k+\alpha ,k+\frac{\alpha }{2}}\left( \overline{\Omega }\times [0,T]\right):= & {} \left\{ f\in C^{\alpha ,\frac{\alpha }{2}}\left( \overline{\Omega }\times [0,T]\right) : \partial _x^{\beta } \partial _t^{i} f\in C^{\alpha ,\frac{\alpha }{2}}\left( \overline{\Omega }\right. \right. \\&\left. \left. \times [0,T]\right) , |\beta |+2i\le 2k\right\} . \end{aligned}$$

Theorem A.2

Let \(\Omega \subset \mathbb {R}^n\) be bounded with boundary \(\partial \Omega \in C^\infty \) and \(0<\alpha <1\) and

$$\begin{aligned}&\dfrac{\partial c}{\partial t}-\sum _{i=1}^n\sum _{j=1}^n a_{ij}(x,t)D_{ij}c+\sum _{i=1}^n b_i(x,t)D_ic+d(x,t)c=g(x,t),\nonumber \\&(x,t)\in Q_T=\Omega \times ]0,T[,\nonumber \\&c(x,t)=\psi (x,t),~~(x,t)\in \partial Q_T\setminus (\Omega \times \{t=T\}), \end{aligned}$$
(68)

where \(\psi \in C^{2+\alpha ,1+\frac{\alpha }{2}}\left( \overline{\Omega }\times [0,T]\right) ,~ a_{ij},b_i,d\in C^{\alpha ,\frac{\alpha }{2}}\left( \overline{\Omega }\times [0,T]\right) \), \(a_{ij}=a_{ji}\) and for constants \(0<C_1\le C_2\)

$$\begin{aligned} C_1|\lambda |^2\le \sum _{i=1}^n\sum _{j=1}^n a_{ij}(x,t)\lambda _i\lambda _j\le C_2|\lambda |^2,~~\forall \lambda \in \mathbb {R}^n,(x,t)\in Q_T. \end{aligned}$$

Also assume that \(g\in C^{\alpha ,\frac{\alpha }{2}}\left( \overline{\Omega }\times [0,T]\right) \), then (68) has a unique solution such that

$$\begin{aligned} c,~\dfrac{\partial c}{\partial t},~\dfrac{\partial c}{\partial x_j},~\dfrac{\partial ^2 c}{\partial x_i\partial x_j}\in C^{\alpha ,\frac{\alpha }{2}}\left( \overline{\Omega }\times [0,T]\right) ,~~\forall i,j. \end{aligned}$$

Proof

See [17]. \(\square \)

Theorem A.3

Let X be a complete metric space and let \(f : X \rightarrow ]-\infty , +\infty ]\) be lower semicontinuous and bounded from below and \(\not \equiv +\infty \). Let \(\epsilon > 0\) and \(x_\epsilon \in X\) be such that \(f(x_\epsilon )\le \inf \Big \{f(x): x\in X\Big \}+\epsilon .\) Then, there exists \(y_\epsilon \in X\) such that

$$\begin{aligned} f(y_\epsilon )\le & {} f(x_\epsilon ),~~~d(x_\epsilon ,y_\epsilon )\le \epsilon ^{\frac{1}{2}},\\ f(y_\epsilon )< & {} f(x) + \epsilon ^{\frac{1}{2}}d(y_\epsilon , x),~~ \forall x \ne y_\epsilon . \end{aligned}$$

Proof

See [20]. \(\square \)

Theorem A.4

Let assumptions AC and initial condition (42) be satisfied and \(u_1,u_2\in C([0, 1]\times [0, T])\). Then, there exist positive constants \(\delta _1\), \(\delta _2\) and \(\delta _3\) independent of \(\tau \) such that

$$\begin{aligned} \int _0^1\rho ^2c^2(\rho ,\tau )\hbox {d}\rho\le & {} \left( \int _0^1\rho ^2c^2(\rho ,0){\text{ d }}\rho +\int _0^\tau \left( \delta _1 \left| \left( c(\rho ,s)\dfrac{\partial c(\rho ,s)}{\partial \rho }\right) \Big |_{\rho =1} \right| \right. \right. \\&\left. \left. +\delta _3\int _0^1\rho ^2({\eta } ^{2}f\left( c,p,q\right) -u_1)^2{\text{ d }}\rho \right) {\text{ ds }}\right) e^{\delta _2\int _0^\tau (|u\left( 1, s \right) |^2+1)\text{ ds }}, \end{aligned}$$

where c is the solution of (31)–(33). If in addition, \(u_1(|x|,\tau ),u_2(|x|,\tau )\in C^{\alpha ,\alpha /2}(\overline{Q^1_T})\), then the problem (31)–(36) has a unique solution \((c(\rho ,\tau ), w(\rho ,\tau ))\) such that \(\dfrac{\partial ^\kappa }{\partial \rho ^\kappa }\dfrac{\partial ^z}{\partial \tau ^z}c\) and \(\dfrac{\partial ^\kappa }{\partial \rho ^\kappa }\dfrac{\partial ^z}{\partial \tau ^z}w\) are continuous functions on \(]0,1[\times ]0,T[\), for each \(\kappa ,z\in \mathbb {N}_0\) with \(\kappa +2 z\le 2\).

Proof

From [17], we easily conclude that the problem (31)–(33) has a unique solution c such that \(c(|x|,\tau )\in W^{2,1}_p(Q^1_T)\). Therefore,

$$\begin{aligned} \int _0^1\rho ^2c\dfrac{\partial c}{\partial \tau }{\text{ d }}\rho= & {} D_{1}\int _0^1c\dfrac{\partial }{\partial \rho }\left( {\rho }^{2}\dfrac{\partial c}{\partial \rho }\right) {\text{ d }}\rho +u\left( 1, \tau \right) \int _0^1 \rho ^3c \dfrac{\partial c}{\partial \rho }{\text{ d }}\rho \\&-\int _0^1\rho ^2c({\eta } ^{2}f\left( c,p,q\right) -u_1){\text{ d }}\rho \\= & {} -D_{1}\int _0^1\rho ^2(\dfrac{\partial c}{\partial \rho })^2{\text{ d }}\rho +D_{1}\left( c(\rho ,\tau )\dfrac{\partial c(\rho ,\tau )}{\partial \rho }\right) \Big |_{\rho =1}\\&+u\left( 1, \tau \right) \int _0^1 \rho ^3c \dfrac{\partial c}{\partial \rho }{\text{ d }}\rho -\int _0^1\rho ^2c({\eta } ^{2}f\left( c,p,q\right) -u_1){\text{ d }}\rho . \end{aligned}$$

Thus,

$$\begin{aligned} \int _0^\tau \int _0^1\rho ^2c\dfrac{\partial c}{\partial s }{\text{ d }}\rho {\text{ d }}s= & {} \int _0^\tau ( -D_{1}\int _0^1\rho ^2(\dfrac{\partial c}{\partial \rho })^2{\text{ d }}\rho +D_{1}\left( c(\rho ,s)\dfrac{\partial c(\rho ,s)}{\partial \rho }\right) \Big |_{\rho =1}\\&+u\left( 1, s \right) \int _0^1 \rho ^3c \dfrac{\partial c}{\partial \rho }{\text{ d }}\rho -\int _0^1\rho ^2c({\eta } ^{2}f\left( c,p,q\right) -u_1){\text{ d }}\rho ){\text{ d }}s. \end{aligned}$$

Therefore, we arrive at

$$\begin{aligned} \int _0^1\rho ^2c^2(\rho ,\tau ){\text{ d }}\rho= & {} \int _0^1\rho ^2c^2(\rho ,0){\text{ d }}\rho + 2\int _0^\tau ( -D_{1}\int _0^1\rho ^2\left( \dfrac{\partial c}{\partial \rho }\right) ^2{\text{ d }}\rho \\&+D_{1}\left( c(\rho ,s)\dfrac{\partial c(\rho ,s)}{\partial \rho }\right) \Big |_{\rho =1} +u\left( 1, s \right) \int _0^1 \rho ^3c \dfrac{\partial c}{\partial \rho }{\text{ d }}\rho \\&-\int _0^1\rho ^2c\left( {\eta } ^{2}f\left( c,p,q\right) -u_1){\text{ d }}\rho \right) {\text{ d }}s. \end{aligned}$$

Hence, there exist positive constants \(\delta _1\), \(\delta _2\) and \(\delta _3\) independent of \(\tau \) such that

$$\begin{aligned} \int _0^1\rho ^2c^2(\rho ,\tau ){\text{ d }}\rho\le & {} \int _0^1\rho ^2c^2(\rho ,0){\text{ d }}\rho +\delta _1\int _0^\tau \left| \left( c(\rho ,s)\dfrac{\partial c(\rho ,s)}{\partial \rho }\right) \Big |_{\rho =1}\right| {\text{ d }}s\\&+\int _0^\tau \left( \delta _2(|u\left( 1,s \right) |^2+1)\int _0^1 \rho ^2c^2{\text{ d }}\rho \right. \\&\left. +\delta _3\int _0^1\rho ^2({\eta } ^{2}f\left( c,p,q\right) -u_1)^2{\text{ d }}\rho \right) {\text{ d }}s. \end{aligned}$$

Now from the Gronwall’s inequality we conclude that

$$\begin{aligned} \int _0^1\rho ^2c^2(\rho ,\tau ){\text{ d }}\rho\le & {} \left( \int _0^1\rho ^2c^2(\rho ,0){\text{ d }}\rho +\int _0^\tau \left( \delta _1\left| \left( c(\rho ,s)\dfrac{\partial c(\rho ,s)}{\partial \rho }\right) \Big |_{\rho =1}\right| \right. \right. \\&\left. \left. +\delta _3\int _0^1\rho ^2({\eta } ^{2}f \left( c,p,q\right) -u_1)^2{\text{ d }}\rho \right) {\text{ d }}s\right) {e}^{\delta _2 \int _0^\tau (|u\left( 1, s \right) |^2+1){\text{ d }}s}. \end{aligned}$$

Also from (31)–(36), Theorem A.1 and t-Anisotropic Embedding Theorem [17], one can easily conclude that there exist functions \(f^1(|x|,\tau )\in C^{\alpha ,\frac{\alpha }{2}}(\overline{Q^1_T})\) and \(g^1(|x|,\tau )\in C^{\alpha ,\frac{\alpha }{2}}(\overline{Q^1_T})\), where \(Q^1_T\) is defined in Lemma A.1, such that \(\widehat{c}(x,\tau )=c(|x|,\tau )\) and \(\widehat{w}(x,\tau )=w(|x|,\tau )\) for \(|x|<1,0<\tau <T\) are the solutions of

$$\begin{aligned}&\dfrac{\partial \widehat{c}}{\partial \tau }-D_1\Delta \widehat{c}-u\left( 1, \tau \right) x.\nabla \widehat{c} =f^1(|x|,\tau ),~~|x|<1,~0<\tau \le T,\\&\widehat{c}(x,\tau )=c_1(\tau )+\overline{c},~~|x|=1,~0<\tau \le T,~\widehat{c}(x,0)=c_0(|x|)+\overline{c},~~|x|\le 1, \end{aligned}$$

and

$$\begin{aligned}&\dfrac{\partial \widehat{w}}{\partial \tau }-D_2\Delta \widehat{w}-u\left( 1, \tau \right) x.\nabla \widehat{w} =g^1(|x|,\tau ),~~|x|<1,~0<\tau \le T,\\&\widehat{w}(x,\tau )=w_1(\tau )+\overline{w},~~|x|=1,~0<\tau \le T,~\widehat{w}(x,0)=w_0(|x|)+\overline{w},~~|x|\le 1, \end{aligned}$$

respectively. Using Theorem A.2, assumptions AC and Theorem A.1 one can easily arrive at

$$\begin{aligned} \widehat{c},~\dfrac{\partial \widehat{c}}{\partial \tau },~\dfrac{\partial \widehat{c}}{\partial x_j},~\dfrac{\partial ^2 \widehat{c}}{\partial x_i\partial x_j},~\widehat{w},~\dfrac{\partial \widehat{w}}{\partial \tau },~\dfrac{\partial \widehat{w}}{\partial x_j},~\dfrac{\partial ^2 \widehat{w}}{\partial x_i\partial x_j}\in C^{\alpha ,\frac{\alpha }{2}}\left( \overline{Q^1_T}\right) ,~~\forall i,j. \end{aligned}$$

Therefore, we get the desired result. \(\square \)

Theorem A.5

Let assumptions AC and condition (42) be satisfied, also \((c_1,w_1,p_1,q_1,d_1,\eta _1)\) and \((c_2,w_2,p_2,q_2,d_2,\eta _2)\) be the exact solutions of the problem (31)–(41) corresponding to \((u^1_1,u^1_2,\overline{c}^1,\overline{w}^1)\in \mathcal {C}_\mathrm{{ad}}\times \mathcal {W}_\mathrm{{ad}}\times \mathcal {C}^1_\mathrm{{ad}}\times \mathcal {W}^1_\mathrm{{ad}}\) and\((u^2_1,u^2_2,\overline{c}^2,\overline{w}^2)\in \mathcal {C}_\mathrm{{ad}}\times \mathcal {W}_\mathrm{{ad}}\times \mathcal {C}^1_\mathrm{{ad}}\times \mathcal {W}^1_\mathrm{{ad}}\), respectively, where \(\mathcal {C}_\mathrm{{ad}}\times \mathcal {W}_\mathrm{{ad}}\times \mathcal {C}^1_\mathrm{{ad}}\times \mathcal {W}^1_\mathrm{{ad}}\) is admissible control set for FOCP (or SOCP). Then, there exist positive constants \(\mu _1\), \(\mu _1^*\), \(\beta _1\), \(\lambda _0\) and \(\lambda \), which are independent of \(\eta _0\) such that for , where

(69)

we have

$$\begin{aligned}&{\Vert (c_1-c_2,w_1-w_2,p_1-p_2,q_1-q_2,d_1-d_2,\eta _1-\eta _2) \Vert }_{L^{\infty }}\\&\quad \le \lambda _0{\Vert \left( u^1_1-u^2_1,u^1_2-u^2_2, \overline{c}^1-\overline{c}^2,\overline{w}^1-\overline{w}^2\right) \Vert }_{L^{\infty }},\\&{\Vert \rho (c_1-c_2,w_1-w_2,p_1-p_2,q_1-q_2,d_1-d_2,\eta _1-\eta _2) \Vert }_{L^2}\\&\quad \le \lambda {\Vert \rho \left( u^1_1-u^2_1,u^1_2-u^2_2,\overline{c}^1 -\overline{c}^2,\overline{w}^1-\overline{w}^2\right) \Vert }_{L^2}. \end{aligned}$$

Proof

Let \(X_1:=\{(c,w,p,q,d,\eta ):\alpha \in C([0, 1]\times [0, T]), ~for~\alpha =c,w,p,q,d,\eta \}\). Clearly \((X_1,\Vert .\Vert _{L^\infty })\) is a Banach space. Now, using (31)–(41) we can define the operator \(F^{(u_1,u_2,\overline{c},\overline{w})}_1:X_1\rightarrow X_1\), such that \((c_1,w_1,p_1,q_1,d_1,\eta _1)\), the exact solution of the problem (31)–(41) corresponding to \((u^1_1,u^1_2,\overline{c}^1,\overline{w}^1)\), is the fixed point of \(F^{(u^1_1,u^1_2,\overline{c}^1,\overline{w}^1)}_1\) and also \((c_2,w_2,p_2,q_2,d_2,\eta _2)\), the exact solution of the problem (31)–(41) corresponding to \((u^2_1,u^2_2,\overline{c}^2,\overline{w}^2)\), is the fixed point of \(F^{(u^2_1,u^2_2,\overline{c}^2,\overline{w}^2)}_1\). Finally, by choosing appropriate \((c^{0}_1,w^{0}_1,p^{0}_1,q^{0}_1,d^{0}_1,\eta ^{0}_1)\in X_1\), \((c^{0}_2,w^{0}_2,p^{0}_2,q^{0}_2,d^{0}_2,\eta ^{0}_2)\in X_1\) and \(F^{(u_1,u_2,\overline{c},\overline{w})}_1\), using Lemmas A.1 and A.2 and Theorem A.4, we can prove that the sequences \(\{(c^n_1,w^n_1,p^n_1,q^n_1,d^n_1,\eta ^n_1)\}_{n=0}^{\infty }\) and \(\{(c^n_2,w^n_2,p^n_2,q^n_2,d^n_2,\eta ^n_2)\}_{n=0}^{\infty }\) with

$$\begin{aligned} \left( c^{n+1}_1,w^{n+1}_1,p^{n+1}_1,q^{n+1}_1,d^{n+1}_1,\eta ^{n+1}_1\right)= & {} F^{\left( u^1_1,u^1_2,\overline{c}^1,\overline{w}^1\right) }_1\left( c^{n}_1, w^{n}_1,p^{n}_1,q^{n}_1,d^{n}_1,\eta ^{n}_1\right) ,\\ \left( c^{n+1}_2,w^{n+1}_2,p^{n+1}_2,q^{n+1}_2,d^{n+1}_2,\eta ^{n+1}_2\right)= & {} F^{\left( u^2_1,u^2_2,\overline{c}^2,\overline{w}^2\right) }_1\left( c^{n}_2, w^{n}_2,p^{n}_2,q^{n}_2,d^{n}_2,\eta ^{n}_2\right) , \end{aligned}$$

converge to \((c_1,w_1,p_1,q_1,d_1,\eta _1)\) and \((c_2,w_2,p_2,q_2,d_2,\eta _2)\), respectively, and there exist positive constants \(\lambda ^n_0<\lambda _0\) and \(\lambda ^n<\lambda \) such that

$$\begin{aligned}&\Vert \left( c^{n+1}_1-c^{n+1}_2,w^{n+1}_1-w^{n+1}_2,p^{n+1}_1-p^{n+1}_2,q^{n+1}_1 -q^{n+1}_2,\right. \\&\quad \left. d^{n+1}_1{-}d^{n+1}_2,\eta ^{n+1}_1-\eta ^{n+1}_2\right) \Vert _{L^{\infty }}\le \lambda ^n_0{\Vert \left( u^1_1-u^2_1,u^1_2{-}u^2_2,\overline{c}^1 -\overline{c}^2,\overline{w}^1-\overline{w}^2\right) \Vert }_{L^{\infty }},\\&\Vert \rho \left( c^{n+1}_1-c^{n+1}_2,w^{n+1}_1-w^{n+1}_2,p^{n+1}_1-p^{n+1}_2,q^{n+1}_1 -q^{n+1}_2,\right. \\&\left. \quad d^{n+1}_1-d^{n+1}_2,\eta _1^{n{+}1}{-}\eta _2^{n+1}\right) \Vert _{L^2} \le \lambda ^n{\Vert \rho \left( u^1_1{-}u^2_1,u^1_2-u^2_2,\overline{c}^1 {-}\overline{c}^2,\overline{w}^1-\overline{w}^2\right) \Vert }_{L^2}. \end{aligned}$$

Therefore, we can obtain the result. \(\square \)

The next theorem shows that there exists a unique solution for the problem (49)–(59).

Theorem A.6

Let assumptions AC be satisfied. Then, for \(t\ge 0\) the adjoint system (49)–(59) has a unique solution \(\left( z_c,z_w,z_p,z_q,z_d,z_\eta \right) \) and for every \(T>0\) we have

$$\begin{aligned}&z_c(|x|,\tau ),z_w(|x|,\tau )\in W^{2,1}_p\left( Q^1_T\right) ,~p>5,~z_\eta \left( \tau \right) \in C^1\left[ 0,T\right] ,\\&\quad _p,z_q,z_d\in C^1\left( [0,1]\times [0,T]\right) , \end{aligned}$$

where \(Q^1_T\) is defined in Lemma A.1.

Proof

Using the change of variable \(t=T-\tau \), employing Lemmas A.1 and A.2 and Theorem A.1, in a similar manner to the proof of the main theorem of [3], we obtain the result. \(\square \)

Theorem A.7

Let assumptions AC and initial condition (42) be satisfied, also assume that \((z_c^1,z_w^1,z_p^1,z_q^1,z_d^1,z_\eta ^1)\) and \((z_c^2,z_w^2,z_p^2,z_q^2,z_d^2,z_\eta ^2)\) are the exact solutions of adjoint system (49)–(59) corresponding to the controls\((u^1_1,u^1_2,\overline{c}^1,\overline{w}^1)\in \mathcal {C}_\mathrm{{ad}}\times \mathcal {W}_\mathrm{{ad}}\times \mathcal {C}^1_\mathrm{{ad}}\times \mathcal {W}^1_\mathrm{{ad}}\) and \((u^2_1,u^2_2,\overline{c}^2,\overline{w}^2)\in \mathcal {C}_\mathrm{{ad}}\times \mathcal {W}_\mathrm{{ad}}\times \mathcal {C}^1_\mathrm{{ad}}\times \mathcal {W}^1_\mathrm{{ad}}\), respectively, where\(\mathcal {C}_\mathrm{{ad}}\times \mathcal {W}_\mathrm{{ad}}\times \mathcal {C}^1_\mathrm{{ad}}\times \mathcal {W}^1_\mathrm{{ad}}\) is admissible control set for FOCP (or SOCP). Then, there exist positive constants \(\mu _2\), \(\mu _2^*\), \(\beta _2\), \(\lambda ^*_1\) and \(\lambda ^*\), which are independent of \(\eta _0\) such that for , where

(70)

and \(K_1\) is defined in Theorem A.5, we have

$$\begin{aligned}&{\Vert \left( z_c^1-z_c^2,z_w^1-z_w^2,z_p^1-z_p^2,z_q^1-z_q^2,z_d^1-z_d^2,z_\eta ^1 -z_\eta ^2\right) \Vert }_{L^{\infty }}\\&\quad \le \lambda ^*{\Vert \left( u^1_1-u^2_1,u^1_2-u^2_2,\overline{c}^1 -\overline{c}^2,\overline{w}^1-\overline{w}^2\right) \Vert }_{L^{\infty }},\\&{\Vert \rho \left( z_c^1-z_c^2,z_w^1-z_w^2,z_p^1-z_p^2,z_q^1-z_q^2,z_d^1 -z_d^2,z_\eta ^1-z_\eta ^2\right) \Vert }_{L^2}\\&\quad \le \lambda ^*_1{\Vert \rho \left( u^1_1-u^2_1,u^1_2-u^2_2,\overline{c}^1 -\overline{c}^2,\overline{w}^1-\overline{w}^2\right) \Vert }_{L^2}, \end{aligned}$$

where \(\lambda ^*_1,\lambda ^*\rightarrow 0\) if \(T\rightarrow 0\).

Proof

Similar to the proof of Theorem A.5, the proof is concluded. \(\square \)

In the following, we provide the proofs of the theorems, which are addressed in Sect. 2.2.

Proof of Theorem 2.1

Let \(\left( c^*,w^*,p^*,q^*,d^*,\eta ^*\right) \) and \(\left( c^{\epsilon },w^{\epsilon },p^{\epsilon },q^{\epsilon },d^{\epsilon },\eta ^{\epsilon }\right) \) be the solutions of (31)–(41) corresponding to the controls \((u_1^*,u_2^*,{\overline{c}}^*,{\overline{w}}^*)\) and \((u_1^{\epsilon },u_2^{\epsilon },{\overline{c}}^\epsilon ,{\overline{w}}^\epsilon ) =(u_1^*+\epsilon u_1^0,u_2^*+\epsilon u_2^0,{\overline{c}}^*+\epsilon {\overline{c}}_0,{\overline{w}}^*+\epsilon {\overline{w}}_0) \in \mathcal {C}_\mathrm{{ad}}\times \mathcal {W}_\mathrm{{ad}}\times \mathcal {C}^1_\mathrm{{ad}}\times \mathcal {W}^1_\mathrm{{ad}}\), respectively, where \(\mathcal {C}_\mathrm{{ad}}\), \(\mathcal {W}_\mathrm{{ad}}\), \(\mathcal {C}^1_\mathrm{{ad}}\) and \(\mathcal {W}^1_\mathrm{{ad}}\) are defined in (28)–(30) and \(\epsilon \) is a positive constant. Also assume that\(J(u_1^*,u_2^*,{\overline{c}}^*,{\overline{w}}^*)=\min \{J(u_1,u_2,\overline{c},\overline{w}):(u_1,u_2,\overline{c},\overline{w})\in \mathcal {C}_\mathrm{{ad}}\times \mathcal {W}_\mathrm{{ad}}\times \mathcal {C}^1_\mathrm{{ad}}\times \mathcal {W}^1_\mathrm{{ad}}\}\), \(c^{\epsilon }_1=\dfrac{c^{\epsilon }-c^*}{\epsilon },~w^{\epsilon }_1=\dfrac{w^{\epsilon }-w^*}{\epsilon },\) \(p^{\epsilon }_1=\dfrac{p^{\epsilon }-p^*}{\epsilon },~q^{\epsilon }_1=\dfrac{q^{\epsilon }-q^*}{\epsilon },~d^{\epsilon }_1=\dfrac{d^{\epsilon }-d^*}{\epsilon }\) and \(\eta ^{\epsilon }_1=\dfrac{\eta ^{\epsilon }-\eta ^*}{\epsilon }.\) Therefore, one can arrive at

$$\begin{aligned} \dfrac{J(u_1^{\epsilon },u_2^{\epsilon },{\overline{c}}^\epsilon ,{\overline{w}}^\epsilon ) -J(u_1^*,u_2^*,{\overline{c}}^*,{\overline{w}}^*)}{\epsilon }= & {} \Big (\int _0^1\int _0^T\rho ^2\Big (\lambda _1\Big (p^*+p^{\epsilon }\Big )p^{\epsilon }_1 \nonumber \\&+\lambda _2\Big (q^*+q^{\epsilon }\Big )q^{\epsilon _1}+\left( u_1^*+u_1^{\epsilon } -2r_1^*\right) u_1^0\nonumber \\&+\Big (u_2^*+u_2^{\epsilon }-2r_2^*\Big )u_2^0\Big ){\text{ d }}\rho {\text{ d }}\tau \nonumber \\&+\Big ({\overline{c}}^*+{\overline{c}}^\epsilon -2r_3^*\Big ){\overline{c}}_0 +\Big ({\overline{w}}^*+{\overline{w}}^\epsilon \nonumber \\&-2r_4^*\Big ){\overline{w}}_0\Big )\ge 0, \end{aligned}$$
(71)

and

$$\begin{aligned} \dfrac{\partial c^{\epsilon }_1}{\partial \tau }= & {} D_{1}\dfrac{1}{\rho ^2}\dfrac{\partial }{\partial \rho }\left( {\rho }^{2}\dfrac{\partial c^{\epsilon }_1}{\partial \rho }\right) +u^{\epsilon }\left( 1, \tau \right) \rho \dfrac{\partial c^{\epsilon }_1}{\partial \rho }+u^{\epsilon }_1\left( 1, \tau \right) \rho \dfrac{\partial c^*}{\partial \rho }\nonumber \\&-f^{\epsilon }_1\left( \eta ^{\epsilon },c^{\epsilon },p^{\epsilon }, q^{\epsilon },\eta ^*,c^*,p^*,q^*\right) +u^0_{1}, \mathrm{\ 0}<\rho <1,\ \tau \mathrm{>}0, \end{aligned}$$
(72)
$$\begin{aligned} \dfrac{\partial c^{\epsilon }_1}{\partial \rho }\left( 0,\tau \right)= & {} 0, ~c^{\epsilon }_1\left( \mathrm{1,}\tau \right) \mathrm{=}{\overline{c}}_0, ~~\ \tau \mathrm{>}0, \end{aligned}$$
(73)
$$\begin{aligned} c^{\epsilon }_1\left( \rho ,0\right)= & {} \overline{c}_0,~\mathrm{\ 0}\le \rho \le \mathrm{1,} \end{aligned}$$
(74)
$$\begin{aligned} \dfrac{\partial w^{\epsilon }_1}{\partial \tau }= & {} D_{2}\dfrac{1}{{\rho }^{2}}\dfrac{\partial }{\partial \rho }\left( {\rho }^{2}\dfrac{\partial w^{\epsilon }_1}{\partial \rho }\right) +u^{\epsilon }\left( 1, \tau \right) \rho \dfrac{\partial w^{\epsilon }_1}{\partial \rho }+u^{\epsilon }_1\left( 1, \tau \right) \rho \dfrac{\partial w^*}{\partial \rho }\nonumber \\&-g^{\epsilon }_1\left( \eta ^{\epsilon },w^{\epsilon },p^{\epsilon }, q^{\epsilon },\eta ^*,w^*,p^*,q^*\right) +u^0_{2}, \mathrm{\ 0}<\rho <1,\ \tau \mathrm{>}0, \end{aligned}$$
(75)
$$\begin{aligned} \dfrac{\partial w^{\epsilon }_1}{\partial \rho }\left( 0,\tau \right)= & {} 0,~w^{\epsilon }_1\left( \mathrm{1,}\tau \right) ={\overline{w}}_0, ~~\ \tau \mathrm{>}0, \end{aligned}$$
(76)
$$\begin{aligned} w^{\epsilon }_1\left( \rho ,0\right)= & {} {\overline{w}}_0,~\mathrm{\ \ 0}\le \rho \le \mathrm{1,} \end{aligned}$$
(77)
$$\begin{aligned} \dfrac{\partial p^{\epsilon }_1}{\partial \tau }\mathrm{+}v^{\epsilon }\dfrac{\partial p^{\epsilon }_1}{\partial \rho }+\mathrm{}v^{\epsilon }_1\dfrac{\partial p^*}{\partial \rho }= & {} G^{\epsilon }_1\left( \eta ^{\epsilon },c^{\epsilon },w^{\epsilon },p^{\epsilon },q^{\epsilon },d^{\epsilon },\eta ^*,c^*,w^*,p^*,q^*,d^*\right) \mathrm{, }\nonumber \\ \mathrm{0}\le & {} \rho \le \mathrm{1,\ }\tau \mathrm{>}0, \end{aligned}$$
(78)
$$\begin{aligned} \dfrac{\partial q^{\epsilon }_1}{\partial \tau }\mathrm{+}v^{\epsilon }\dfrac{\partial q^{\epsilon }_1}{\partial \rho }+\mathrm{}v^{{\epsilon }}_1\dfrac{\partial q^*}{\partial \rho }= & {} G^{\epsilon }_2\left( \eta ^{\epsilon },c^{\epsilon },w^{\epsilon }, p^{\epsilon },q^{\epsilon },d^{\epsilon },\eta ^*,c^*,w^*,p^*,q^*,d^*\right) \mathrm{, }\nonumber \\ \mathrm{0}\le & {} \rho \le \mathrm{1,\ }\tau \mathrm{>}0, \end{aligned}$$
(79)
$$\begin{aligned} \dfrac{\partial d^{\epsilon }_1}{\partial \tau }\mathrm{+}v^{\epsilon }\dfrac{\partial d^{\epsilon }_1}{\partial \rho }+\mathrm{}v^{\epsilon }_1\dfrac{\partial d^*}{\partial \rho }= & {} G^{\epsilon }_3\left( \eta ^{\epsilon },c^{\epsilon },w^{\epsilon }, p^{\epsilon },q^{\epsilon },d^{\epsilon },\eta ^*,c^*,w^*,p^*, q^*,d^*\right) \mathrm{, }\nonumber \\ \mathrm{0}\le & {} \rho \le \mathrm{1,\ }\tau \mathrm{>}0, \end{aligned}$$
(80)
$$\begin{aligned} p^\epsilon _1\left( \rho ,0\right)= & {} 0,~~~q^\epsilon _1\left( \rho ,0\right) =0,~~~ d^\epsilon _1\left( \rho ,0\right) =0,~~~~\mathrm{0}\le \rho \le \mathrm{1,\ } \end{aligned}$$
(81)
$$\begin{aligned} \dfrac{\mathrm{1}}{{\rho }^{\mathrm{2}}}\dfrac{\partial }{\partial \rho }\left( {\rho }^{\mathrm{2}}u^{\epsilon }_1\right)= & {} h^{\epsilon }_1\left( \eta ^{\epsilon },c^{\epsilon },w^{\epsilon }, p^{\epsilon },q^{\epsilon },d^{\epsilon },\eta ^*,c^*,w^*,p^*,q^*,d^*\right) ,\nonumber \\ \mathrm{0}< & {} \rho \le \mathrm{1,\ }\tau \mathrm{>}0,\nonumber \\ \dfrac{\mathrm{1}}{{\rho }^{\mathrm{2}}}\dfrac{\partial }{\partial \rho }\left( {\rho }^{\mathrm{2}}u^{\epsilon }\right)= & {} {\eta ^{\epsilon }}^2h\left( c^{\epsilon },w^{\epsilon },p^{\epsilon }, q^{\epsilon },d^{\epsilon }\right) ,~~~\mathrm{0}< \rho \le \mathrm{1,\ }\tau \mathrm{>}0,\nonumber \\ \dfrac{d\eta ^{\epsilon }_1 (\tau )}{d\tau }= & {} \eta ^{\epsilon }_1(\tau )u^\epsilon ( 1,\tau )+\eta ^* (\tau )u^{\epsilon }_1( 1,\tau ),~~~\tau>0,\\ \eta ^{\epsilon }_1(0)= & {} 0,~~u^{\epsilon }_1\left( 0,\tau \right) \mathrm{=0,\ \ }~~u^{\epsilon }\left( 0,\tau \right) \mathrm{=0,\ \ }~\tau>0,\nonumber \\ v^{\epsilon }_1\left( \rho ,\tau \right)= & {} u^{\epsilon }_1\left( \rho ,\tau \right) \mathrm{-}\rho u^{\epsilon }_1\left( \mathrm{1,}\tau \right) ,~~v^{\epsilon }\left( \rho ,\tau \right) \mathrm{=}u^{\epsilon }\left( \rho ,\tau \right) \mathrm{-}\rho u^{\epsilon }\left( \mathrm{1,}\tau \right) ,\nonumber \\ \mathrm{0}\le & {} \rho \le \mathrm{1,\ }\tau \mathrm{>}0,\nonumber \end{aligned}$$
(82)

where

$$\begin{aligned}&f^{\epsilon }_1\left( \eta ^{\epsilon },c^{\epsilon },p^{\epsilon }, q^{\epsilon },\eta ^*,c^*,p^*,q^*\right) =\dfrac{{\eta ^{\epsilon }}^2(\tau )f \left( c^{\epsilon },p^{\epsilon },q^{\epsilon }\right) -{\eta ^*}^2(\tau )f\left( c^*,p^*,q^*\right) }{\epsilon },\\&g^{\epsilon }_1\left( \eta ^{\epsilon },w^{\epsilon },p^{\epsilon }, q^{\epsilon },\eta ^*,w^*,p^*,q^*\right) =\dfrac{{\eta ^{\epsilon }}^2(\tau )g \left( w^{\epsilon },p^{\epsilon },q^{\epsilon }\right) -{\eta ^*}^2(\tau )g\left( w^*,p^*,q^*\right) }{\epsilon },\\&G_i^{\epsilon }\left( \eta ^{\epsilon },c^{\epsilon },w^{\epsilon }, p^{\epsilon },q^{\epsilon },d^{\epsilon },\eta ^*,c^*,w^*,p^*,q^*,d^*\right) \\&\quad = \dfrac{ G_i(\eta ^{\epsilon },c^{\epsilon },w^{\epsilon },p^{\epsilon }, q^{\epsilon },d^{\epsilon })-G_i(\eta ^*,c^*,w^*,p^*,q^*,d^*)}{\epsilon },~~ i=1,2,3,\\&h^{\epsilon }_1\left( \eta ^{\epsilon },c^{\epsilon },w^{\epsilon },p^{\epsilon }, q^{\epsilon },d^{\epsilon },\eta ^*,c^*,w^*,p^*,q^*,d^*\right) \\&\quad = \dfrac{{\eta ^{\epsilon }}^2 h\left( c^{\epsilon },w^{\epsilon }, p^{\epsilon },q^{\epsilon },d^{\epsilon }\right) -{\eta ^*}^2 h \left( c^*,w^*,p^*,q^*,d^*\right) }{\epsilon }. \end{aligned}$$

Therefore, using (49)–(59), assumption A, Theorem A.5 and Lemmas A.1 and A.2 we deduce that

$$\begin{aligned}&\int _0^T\int _0^1\rho ^2 \Big (c^\epsilon _1\dfrac{\partial z_c}{\partial \tau } +z_c\dfrac{\partial c^\epsilon _1}{\partial \tau } +w^\epsilon _1\dfrac{\partial z_w}{\partial \tau } +z_w\dfrac{\partial w^\epsilon _1}{\partial \tau } +p^\epsilon _1\dfrac{\partial z_p}{\partial \tau } +z_p\dfrac{\partial p^\epsilon _1}{\partial \tau } +q^\epsilon _1\dfrac{\partial z_q}{\partial \tau }\\&\quad +z_q\dfrac{\partial q^\epsilon _1}{\partial \tau } +d^\epsilon _1\dfrac{\partial z_d}{\partial \tau } +z_d\dfrac{\partial d^\epsilon _1}{\partial \tau }\Big ) {\text{ d }}\rho {\text{ d }}\tau +\int _0^T\left( \eta ^\epsilon _1\dfrac{d z_\eta }{d \tau }+z_\eta \dfrac{d \eta ^\epsilon _1}{d \tau }\right) {\text{ d }}\tau =\\&\quad -\int _0^T\int _0^1\rho ^2\Big (\lambda _1p^*p^\epsilon _1 +\lambda _2q^*q^\epsilon _1-z_cu_1^0- z_wu_2^0\Big ){\text{ d }}\rho {\text{ d }}\tau +\varpi (\epsilon ,\rho , T)\\&\quad -\int _0^TD_1\dfrac{\partial z_c}{\partial \rho }(1,\tau )\overline{c}_0+D_2\dfrac{\partial z_w}{\partial \rho }(1,\tau )\overline{w}_0{\text{ d }}\tau , \end{aligned}$$

where \(\displaystyle {\lim _{\epsilon \rightarrow 0}}\varpi (\epsilon ,\rho , T)=0\). Thus, we have

$$\begin{aligned}&\int _0^T\int _0^1\rho ^2\Big (\lambda _1p^*p^\epsilon _1+\lambda _2q^*q^\epsilon _1-z_cu_1^0- z_wu_2^0\Big ){\text{ d }}\rho {\text{ d }}\tau -\varpi (\epsilon ,\rho , T)\nonumber \\&\quad +\int _0^TD_1\dfrac{\partial z_c}{\partial \rho }(1,\tau )\overline{c}_0+D_2\dfrac{\partial z_w}{\partial \rho }(1,\tau )\overline{w}_0{\text{ d }}\tau \nonumber \\&\quad =-\int _0^T\int _0^1\rho ^2 \Big (\dfrac{\partial z_cc^\epsilon _1}{\partial \tau } +\dfrac{\partial z_ww^\epsilon _1}{\partial \tau } +\dfrac{\partial z_pp^\epsilon _1}{\partial \tau } +\dfrac{\partial z_qq^\epsilon _1}{\partial \tau }+\dfrac{\partial z_dd^\epsilon _1}{\partial \tau }\Big ){\text{ d }}\rho {\text{ d }}\tau \nonumber \\&\qquad -\int _0^T\dfrac{{\hbox {d}} z_\eta \eta ^\epsilon _1}{\hbox {d} \tau } {\text{ d }}\tau =\int _0^1\rho ^2 \Big ( z_c(\rho ,0)\overline{c}_0 + z_w(\rho ,0)\overline{w}_0\Big ){\text{ d }}\rho . \end{aligned}$$
(83)

So using (71) and (83), we arrive at

$$\begin{aligned}&\int _0^1\int _0^T\rho ^2\Big (( z_c+u_1^*-r_1^*)u_1^0+( z_w+u_2^*-r_2^*)u_2^0\Big ){\text{ d }}\rho {\text{ d }}\tau \nonumber \\&\quad +\left( \overline{c}^*-r_3^*-\int _0^T D_1 \dfrac{\partial z_c}{\partial \rho }(1,\tau )d\tau +\int _0^1 \rho ^2 z_c(\rho ,0)d\rho \right) {\overline{c}}_0\nonumber \\&\quad +\left( \overline{w}^*-r_4^*-\int _0^T D_2 \dfrac{\partial z_w}{\partial \rho }(1,\tau )d\tau +\int _0^1\rho ^2 z_w(\rho ,0)d \rho \right) {\overline{w}}_0 \ge 0. \end{aligned}$$
(84)

Therefore, using tangent-normal cone techniques [21] and (28)–(30), \((u_1^*,u_2^*,{\overline{c}}^*,{\overline{w}}^*)\) is as follows:

$$\begin{aligned} u_1^*= & {} \mathcal {F}_1(-z_c+r_1^*),~u_2^*=\mathcal {F}_2(-z_w+r_2^*),\\ {\overline{c}}^*= & {} \mathcal {F}_3\left( \int _0^T D_1\dfrac{\partial z_c}{\partial \rho }(1,\tau ){\text{ d }}\tau +r_3^*-\int _0^1\rho ^2 z_c(\rho ,0){\text{ d }}\rho \right) ,\\ {\overline{w}}^*= & {} \mathcal {F}_4\left( \int _0^T D_2\dfrac{\partial z_w}{\partial \rho }(1,\tau ){\text{ d }}\tau +r_4^*-\int _0^1\rho ^2 z_w(\rho ,0){\text{ d }}\rho \right) . \end{aligned}$$

\(\square \)

Proof of Theorem 2.2

Using Theorem A.5, we conclude that for each

where

$$ \begin{aligned} \mathcal {C}^*_\mathrm{{ad}}:= & {} \Big \{ v\in L^\infty ([0, 1]\times [0, T]): l^{*}_1(\rho ,\tau )\le v(\rho ,\tau )\\&\le l^{**}_1(\rho ,\tau ),~a.e.~ (\rho ,\tau )\in [0, 1]\times [0, T]\Big \},\\ \mathcal {W}^*_\mathrm{{ad}}:= & {} \Big \{ v\in L^\infty ([0, 1]\times [0, T]): l^{*}_2(\rho ,\tau ) \le v(\rho ,\tau )\\&\le l^{**}_2(\rho ,\tau ),~a.e.~ (\rho ,\tau )\in [0, 1]\times [0, T]\Big \},\\ \mathcal {C}^{1*}_\mathrm{{ad}}:= & {} \Big \{ v\in L^\infty ( [0, T]):\exists c~\mathrm{{constant}}~s.t ~v(\tau )=c,~a.e.~\tau \in [0,T]~ \& ~ l^{*}_3\le c\\&\le l^{**}_3\Big \},\\ \mathcal {W}^{1*}_\mathrm{{ad}}:= & {} \Big \{ v\in L^\infty ( [0, T]):\exists c~\mathrm{{constant}}~s.t ~v(\tau )=c,~a.e.~\tau \in [0,T]~ \& ~ l^{*}_4\le c\\&\le l^{**}_4\Big \}, \end{aligned}$$

there exists a unique value \({J^*}(u_1,u_2,\overline{c},\overline{w})\) such that for every sequence \(\Big \{(u^n_1,u^n_2,\overline{c}^n,\overline{w}^n)\Big \}_{n=0}^{\infty }\) in \(\mathcal {C}_{ad}\times \mathcal {W}_{ad}\times \mathcal {C}^1_{ad}\times \mathcal {W}^1_{ad}\), which converges to \((u_1,u_2,\overline{c},\overline{w})\) in \({L^4_2([0, 1]\times [0, T])}:=L^2([0, 1]\times [0, T])\times L^2([0, 1]\times [0, T])\times L^2[0, T]\times L^2 [0, T]\), we have \({J}(u^n_1,u^n_2,\overline{c}^n,\overline{w}^n)\rightarrow {J^*}(u_1,u_2,\overline{c},\overline{w})\). Using the Lebesgue Dominated Convergence Theorem [22], we deduce that the function

$$\begin{aligned}&\mathcal {J}(u_1,u_2,\overline{c},\overline{w})\nonumber \\&={\left\{ \begin{array}{ll} {J}(u_1,u_2,\overline{c},\overline{w}),~~~~(u_1,u_2, \overline{c},\overline{w})\in \mathcal {C}_\mathrm{{ad}}\times \mathcal {W}_\mathrm{{ad}} \times \mathcal {C}^1_\mathrm{{ad}}\times \mathcal {W}^1_\mathrm{{ad}},\\ {J^*}(u_1,u_2,\overline{c},\overline{w}),~~~~(u_1,u_2, \overline{c},\overline{w})\in \mathcal {C}^*_\mathrm{{ad}}\times \mathcal {W}^{*}_\mathrm{{ad}} \times \mathcal {C}^{1*}_\mathrm{{ad}}\times \mathcal {W}^{1*}_\mathrm{{ad}}\setminus C_4([0, 1]\times [0, T]),\\ +\infty ,~~~~~~~~~~~~~~~~~(u_1,u_2,\overline{c},\overline{w}) \in (\mathcal {C}^*_\mathrm{{ad}}\times \mathcal {W}^*_\mathrm{{ad}}\times \mathcal {C}^{1*}_\mathrm{{ad}} \times \mathcal {W}^{1*}_\mathrm{{ad}})^c\cap L^{4,2}_1([0, 1]\times [0, T]),\\ \end{array}\right. }\nonumber \\ \end{aligned}$$
(85)

is lower semicontinuous with respect to \((u_1,u_2,{\overline{c}},{\overline{w}})\) in \({L_1^{4,2}([0, 1]\times [0, T])}\), where

$$\begin{aligned} {L^{4,2}_1([0, 1]\times [0, T])}:= & {} \Big \{(f_1,f_2,f_3,f_4):(\rho ^2 f_1, \rho ^2 f_2,f_3,f_4)\in L^1([0, 1]\\&\times [0, T])\times L^1([0, 1] \times [0, T])\times L^1[0, T]\times L^1 [0, T]\Big \}. \end{aligned}$$

Using Theorem A.3, we conclude that for each positive \(\epsilon \) there exists \((u^\epsilon _1,u^\epsilon _2,\overline{c}^\epsilon ,\overline{w}^\epsilon )\) such that

$$\begin{aligned}&\mathcal {J}(u_1^\epsilon ,u^\epsilon _2,{\overline{c}}^\epsilon , {\overline{w}^\epsilon })<\mathcal {J}(u_1,u_2,{\overline{c}}, {\overline{w}})+\epsilon ^{\frac{1}{2}}\Big (\Vert \rho ^2(u_1-u_1^\epsilon )\Vert _{L^1} +\Vert \rho ^2(u_2-u_2^\epsilon )\Vert _{L^1}\nonumber \\&\quad +\Vert \overline{c} -\overline{c}^\epsilon \Vert _{L^1[0,T]}+\Vert \overline{w} -\overline{w}^\epsilon \Vert _{L^1[0,T]}\Big ), \forall (u_1,u_2,\overline{c},\overline{w})\not =(u_1^\epsilon ,u^\epsilon _2,\overline{c}^\epsilon ,\overline{w}^\epsilon ). \end{aligned}$$
(86)

In addition, each sequence \(\Big \{(u_1^n,u^n_2,\overline{c}^n,\overline{w}^n)\Big \}_{n=0}^{\infty }\) in \(\mathcal {C}_\mathrm{{ad}}\times \mathcal {W}_\mathrm{{ad}}\times \mathcal {C}^1_\mathrm{{ad}}\times \mathcal {W}^1_\mathrm{{ad}}\), which converges to \((u^\epsilon _1,u^\epsilon _2,\overline{c}^\epsilon ,\overline{w}^\epsilon )\) in \(L_2^4([0, 1]\times [0, T])\), is a Cauchy sequence in \(L_2^4([0, 1]\times [0, T])\). Also assume that for each \(n\in \mathbb {N}_0\), \((c_{n},w_{n},p_{n},q_{n},d_{n},\eta _{n})\) is the solution of (31)–(41) corresponding to \((u_1^{n},u^{n}_2,\overline{c}^{n},\overline{w}^{n})\). Therefore, according to Theorem A.5, the sequence

$$\begin{aligned} \Big \{\rho (c_{n},w_{n},p_{n},q_{n},d_{n},\eta _{n})\Big \}_{n=0}^{\infty }, \end{aligned}$$

is a Cauchy sequence in

$$\begin{aligned} L^6_2([0, 1]\times [0, T]):= & {} L^2([0, 1]\times [0, T])\times L^2([0, 1]\times [0, T]) \times L^2([0, 1]\\&\times [0, T])\times L^2([0, 1] \times [0, T]) \times L^2([0, 1]\times [0, T])\\&\times L^2[0, T]. \end{aligned}$$

So using the Lebesgue Dominated Convergence Theorem [22], we derive that for each \(p>5\) there exist subsequences \(\Big \{(u_1^{n_k},u^{n_k}_2,\overline{c}^{n_k},\overline{w}^{n_k})\Big \}_{k=0}^{\infty }\) and \(\Big \{(c_{n_k},w_{n_k},p_{n_k},q_{n_k},d_{n_k},\eta _{n_k})\Big \}_{k=0}^{\infty }\), which are Cauchy in

$$\begin{aligned} L_p^4([0, 1]\times [0, T]):= & {} L^p([0, 1]\times [0, T])\times L^p([0, 1] \times [0, T])\\&\times L^p[0, T]\times L^p [0, T], \end{aligned}$$

and

$$\begin{aligned} L^6_p([0, 1]\times [0, T]):= & {} L^p([0, 1]\times [0, T])\times L^p([0, 1] \times [0, T])\times L^p([0, 1]\\&\times [0, T])\times L^p([0, 1] \times [0, T]) \times L^p([0, 1]\times [0, T])\\&\times L^p[0, T], \end{aligned}$$

respectively. Thus, using Lemma A.1, it is easy to see that the sequences \(\Big \{(c_{n_k},w_{n_k},p_{n_k},q_{n_k},d_{n_k},\eta _{n_k})\Big \}_{k=0}^{\infty }\) and \(\Big \{(z_{c_{n_k}},z_{w_{n_k}},z_{p_{n_k}},z_{q_{n_k}},z_{d_{n_k}},z_{\eta _{n_k}})\Big \}_{k=0}^{\infty }\) are Cauchy in

$$\begin{aligned} W^{2,1,6}_p(Q^1_T):= & {} W^{2,1}_p(Q^1_T)\times W^{2,1}_p(Q^1_T) \times W^{2,1}_p(Q^1_T)\\&\times W^{2,1}_p(Q^1_T) \times W^{2,1}_p(Q^1_T)\times W^{2,1}_p(Q^1_T), \end{aligned}$$

where \((z_{c_{n_k}},z_{w_{n_k}},z_{p_{n_k}},z_{q_{n_k}},z_{d_{n_k}},z_{\eta _{n_k}})\) is the solution of (49)–(59) corresponding to \((u_1^{n_k},u^{n_k}_2,\overline{c}^{n_k},\overline{w}^{n_k})\). Therefore, there exist \(A=(c^\epsilon ,w^\epsilon ,p^\epsilon ,q^\epsilon ,d^\epsilon ,\eta ^\epsilon ,z^\epsilon _{c},z^\epsilon _{w},z^\epsilon _{p},z^\epsilon _{q},z^\epsilon _{d},z^\epsilon _{\eta })\) and sequences and such that

$$\begin{aligned} \lim _{m\rightarrow \infty }A_m= & {} A,~in~W^{2,1,12}_p(Q^1_T),\\ \lim _{m\rightarrow \infty }B_m= & {} (u^\epsilon _1,u^\epsilon _2,\overline{c}^\epsilon , \overline{w}^\epsilon ),~in~L^4_p([0, 1]\times [0, T]). \end{aligned}$$

From t-Anisotropic Embedding Theorem [17], we conclude that for \(0<\alpha <1\), each component of A belongs to \(C^{\alpha ,\frac{\alpha }{2}}(\overline{Q^1_T})\). Using the proof of Theorem 2.1 and tangent-normal cone techniques [21], for \(\epsilon \) small enough we have

$$\begin{aligned}&|u_1^\epsilon -\mathcal {F}_1(-z^\epsilon _c+r_1^*)|\le \epsilon ^{\frac{1}{2}},~|u_2^\epsilon -\mathcal {F}_2( -z^\epsilon _w+r_2^*)|\le \epsilon ^{\frac{1}{2}}, \end{aligned}$$
(87)
$$\begin{aligned}&\left| {\overline{c}}^\epsilon -\mathcal {F}_3\left( \int _0^T(D_1\dfrac{\partial z^\epsilon _c}{\partial \rho }(1,\tau )){\text{ d }}\tau +r_3^*-\int _0^1\rho ^2 z^\epsilon _c(\rho ,0){\text{ d }}\rho \right) \right| \le \epsilon ^{\frac{1}{2}}, \end{aligned}$$
(88)
$$\begin{aligned}&\left| {\overline{w}}^\epsilon -\mathcal {F}_4\left( \int _0^T(D_2\dfrac{\partial z^\epsilon _w}{\partial \rho }(1,\tau )){\text{ d }}\tau +r_4^*-\int _0^1\rho ^2 z^\epsilon _w(\rho ,0){\text{ d }}\rho \right) \right| \le \epsilon ^{\frac{1}{2}}. \end{aligned}$$
(89)

From Theorem A.7 and (49)–(54), it is clear that there exists a positive constant \(\beta ^*_0\), which is independent of T and \(\eta _0\) such that if \(T<\beta _0^*\min \{T_0,T_1\}\), then the function

$$\begin{aligned}&\mathcal {H}:\mathcal {C}_\mathrm{{ad}}\times \mathcal {W}_\mathrm{{ad}}\times \mathcal {C}^1_\mathrm{{ad}} \times \mathcal {W}^1_\mathrm{{ad}}\rightarrow \mathcal {C}_\mathrm{{ad}}\times \mathcal {W}_\mathrm{{ad}} \times \mathcal {C}^1_\mathrm{{ad}}\times \mathcal {W}^1_\mathrm{{ad}},\\&\mathcal {H}(u_1,u_2,\overline{c},\overline{w})=\left( \mathcal {F}_1(-z_c+r_1^*), \mathcal {F}_2(-z_w+r_2^*),\mathcal {F}_3\left( \int _0^T D_1\dfrac{\partial z_c}{\partial \rho }(1,\tau ){\text{ d }}\tau +r_3^*\right. \right. \\&\quad \left. -\int _0^1\rho ^2 z_c(\rho ,0){\text{ d }}\rho \right) ,\\&\left. \mathcal {F}_4\left( \int _0^T D_2\dfrac{\partial z_w}{\partial \rho }(1,\tau ){\text{ d }}\tau +r_4^* -\int _0^1\rho ^2 z_w(\rho ,0){\text{ d }}\rho \right) \right) , \end{aligned}$$

where \(z_c\) and \(z_w\) are adjoint states corresponding to \((u_1,u_2,\overline{c},\overline{w})\), has a unique fixed point \((u_1^*,u_2^*,{\overline{c}}^*,{\overline{w}}^*)\). Also using (49)–(54), (86), Theorems A.5 and A.7, and the proof of Theorem A.4, it is easy to show that there exists a positive constant \(\beta ^*\), which is independent of T and \(\eta _0\) such that if \(T<\beta ^*\min \{T_0,T_1\}\), then the sequence \(\{(\rho u_1^\epsilon ,\rho u_2^\epsilon ,\overline{c}^\epsilon ,\overline{w}^\epsilon )\}\) has a subsequence, which converges to \((\rho u_1^*,\rho u_2^*,\overline{c}^*,\overline{w}^*)\) in \(L_2^4([0, 1]\times [0, T])\), as \(\epsilon \) converges to zero. Therefore, one can arrive at

$$\begin{aligned} \mathcal {J}(u_1^*,u_2^*,{\overline{c}}^*,{\overline{w}}^*)\le \mathcal {J}(u_1,u_2, {\overline{c}},{\overline{w}}),~~\forall (u_1,u_2,{\overline{c}}, {\overline{w}})\in \mathcal {C}^*_\mathrm{{ad}}\times \mathcal {W}^*_\mathrm{{ad}} \times \mathcal {C}^1_\mathrm{{ad}}\times \mathcal {W}^1_\mathrm{{ad}}, \end{aligned}$$

which results in

$$\begin{aligned} {J}(u_1^*,u_2^*,{\overline{c}}^*,{\overline{w}}^*)\le {J}(u_1,u_2, {\overline{c}},{\overline{w}}),~~\forall (u_1,u_2,{\overline{c}},{\overline{w}})\in \mathcal {C}_\mathrm{{ad}}\times \mathcal {W}_\mathrm{{ad}}\times \mathcal {C}^1_\mathrm{{ad}} \times \mathcal {W}^1_\mathrm{{ad}}. \end{aligned}$$

\(\square \)

Proof of Theorem 2.3

Let \(\left( c^*,w^*,p^*,q^*,d^*,\eta ^*\right) \) and \(\left( c^{\epsilon },w^{\epsilon },p^{\epsilon },q^{\epsilon },d^{\epsilon },\eta ^{\epsilon }\right) \) be the solutions of (31)–(41) such that in (33) and (36) \(\overline{c}=0\) and \(\overline{w}=0\), respectively, corresponding to the controls \((u_1^*,u_2^*,{\overline{c}}^*,{\overline{w}}^*)\in \mathcal {C}_\mathrm{{ad}}\times \mathcal {W}_\mathrm{{ad}}\times \mathcal {C}^1_\mathrm{{ad}}\times \mathcal {W}^1_\mathrm{{ad}}\) and\((u_1^{\epsilon },u_2^{\epsilon },{\overline{c}}^\epsilon ,{\overline{w}}^\epsilon ) =(u_1^*+\epsilon u_1^0,u_2^*+\epsilon u_2^0,{\overline{c}}^*+\epsilon {\overline{c}}_0,{\overline{w}}^*+\epsilon {\overline{w}}_0) \in \mathcal {C}_\mathrm{{ad}}\times \mathcal {W}_\mathrm{{ad}}\times \mathcal {C}^1_\mathrm{{ad}}\times \mathcal {W}^1_\mathrm{{ad}}\), respectively, where \(\mathcal {C}_\mathrm{{ad}}\), \(\mathcal {W}_\mathrm{{ad}}\), \(\mathcal {C}^1_\mathrm{{ad}}\) and \(\mathcal {W}^1_\mathrm{{ad}}\) are defined in (45)–(48) and \(\epsilon \) is a positive constant. Also assume that

$$\begin{aligned} c^{\epsilon }_1= & {} \dfrac{c^{\epsilon }-c^*}{\epsilon },~w^{\epsilon }_1 =\dfrac{w^{\epsilon }-w^*}{\epsilon }, ~p^{\epsilon }_1=\dfrac{p^{\epsilon }-p^*}{\epsilon },~q^{\epsilon }_1 =\dfrac{q^{\epsilon }-q^*}{\epsilon },\\ d^{\epsilon }_1= & {} \dfrac{d^{\epsilon }-d^*}{\epsilon },~ \eta ^{\epsilon }_1=\dfrac{\eta ^{\epsilon }-\eta ^*}{\epsilon }, \end{aligned}$$

and \(J_1(u_1^*,u_2^*,{\overline{c}}^*,{\overline{w}}^*)=\min \Big \{J_1(u_1,u_2,\overline{c},\overline{w}):(u_1,u_2,\overline{c},\overline{w})\in \mathcal {C}_\mathrm{{ad}}\times \mathcal {W}_\mathrm{{ad}}\times \mathcal {C}^1_\mathrm{{ad}}\times \mathcal {W}^1_\mathrm{{ad}}\Big \}.\) Therefore, we have

$$\begin{aligned}&\dfrac{J_1(u_1^{\epsilon },u_2^{\epsilon },{\overline{c}}^\epsilon , {\overline{w}}^\epsilon )-J_1(u_1^*,u_2^*,{\overline{c}}^*,{\overline{w}}^*)}{\epsilon } =\Big (\int _0^1\int _0^T\rho ^2\Big (\lambda _1(p^*+p^{\epsilon })p^{\epsilon }_1\nonumber \\&\quad +\lambda _2(q^*+q^{\epsilon })q^{\epsilon }_1 +(u_1^*+u_1^{\epsilon }-2r_1^*)u_1^0 +(u_2^*+u_2^{\epsilon }-2r_2^*)u_2^0\Big ){\text{ d }}\rho {\text{ d }}\tau \nonumber \\&\quad +\int _0^T({\overline{c}}^*+{\overline{c}}^\epsilon -2r_3^*){\overline{c}}_0 +({\overline{w}}^*+{\overline{w}}^\epsilon -2r_4^*){\overline{w}}_0{\text{ d }}\tau \Big )\ge 0, \end{aligned}$$
(90)

where \(\left( c^{\epsilon }_1,w^{\epsilon }_1,p^{\epsilon }_1,q^{\epsilon }_1,d^{\epsilon }_1,\eta ^{\epsilon }_1\right) \) is the solution of (72)–(82) such that in (74) and (77), \(\overline{c}_0=0\) and \(\overline{w}_0=0\), respectively, also in (73) and (76), \(\overline{c}_0=\overline{c}_0(\tau )\) and \(\overline{w}_0=\overline{w}_0(\tau )\), respectively. Therefore, using (49)–(59), assumption A and Theorems A.4 and A.5, one can deduce that

$$\begin{aligned}&\int _0^T\int _0^1\rho ^2 \left( c^\epsilon _1\dfrac{\partial z_c}{\partial \tau }+z_c\dfrac{\partial c^\epsilon _1}{\partial \tau }+w^\epsilon _1 \dfrac{\partial z_w}{\partial \tau }+z_w\dfrac{\partial w^\epsilon _1}{\partial \tau } +p^\epsilon _1\dfrac{\partial z_p}{\partial \tau }+z_p\dfrac{\partial p^\epsilon _1}{\partial \tau }+q^\epsilon _1\dfrac{\partial z_q}{\partial \tau }\right. \\&\left. \quad +z_q\dfrac{\partial q^\epsilon _1}{\partial \tau }+d^\epsilon _1\dfrac{\partial z_d}{\partial \tau }+z_d\dfrac{\partial d^\epsilon _1}{\partial \tau }\right) {\text{ d }}\rho {\text{ d }}\tau +\int _0^T\left( \eta ^\epsilon _1\dfrac{d z_\eta }{d \tau }+z_\eta \dfrac{d \eta ^\epsilon _1}{d \tau }\right) {\text{ d }}\tau \\&\quad = -\int _0^T\int _0^1\rho ^2\Big (\lambda _1p^*p^\epsilon _1 +\lambda _2q^*q^\epsilon _1-z_cu_1^0 - z_wu_2^0\Big ){\text{ d }}\rho {\text{ d }}\tau +\varpi (\epsilon ,\rho , T)\\&\qquad -\int _0^TD_1\dfrac{\partial z_c}{\partial \rho }(1,\tau )\overline{c}_0 +D_2\dfrac{\partial z_w}{\partial \rho }(1,\tau )\overline{w}_0{\text{ d }}\tau , \end{aligned}$$

where \(\displaystyle {\lim _{\epsilon \rightarrow 0}}\varpi (\epsilon ,\rho , T)=0\). Thus, we arrive at

$$\begin{aligned}&\int _0^T\int _0^1\rho ^2\Big (\lambda _1p^*p^\epsilon _1 +\lambda _2q^*q^\epsilon _1-z_cu_1^0- z_wu_2^0\Big ){\text{ d }}\rho {\text{ d }}\tau -\varpi (\epsilon ,\rho , T)\\&\quad +\int _0^TD_1\dfrac{\partial z_c}{\partial \rho }(1,\tau )\overline{c}_0 +D_2\dfrac{\partial z_w}{\partial \rho }(1,\tau ) \overline{w}_0{\text{ d }}\tau = -\int _0^T\int _0^1\rho ^2\left( \dfrac{\partial z_cc^\epsilon _1}{\partial \tau }+\dfrac{\partial z_ww^\epsilon _1}{\partial \tau }\right. \\&\quad \left. +\dfrac{\partial z_pp^\epsilon _1}{\partial \tau }+\dfrac{\partial z_qq^\epsilon _1}{\partial \tau }+\dfrac{\partial z_dd^\epsilon _1}{\partial \tau }\right) {\text{ d }}\rho {\text{ d }}\tau -\int _0^T\dfrac{{\text{ d }} z_\eta \eta ^\epsilon _1}{{\text{ d }} \tau } {\text{ d }}\tau =0. \end{aligned}$$

So using (90) we get

$$\begin{aligned}&\Big (\int _0^1\int _0^T\rho ^2\left( ( z_c+u_1^*-r_1^*)u_1^0 +( z_w+u_2^*-r_2^*)u_2^0\right) {\text{ d }}\rho {\text{ d }}\tau \\&\quad +\int _0^T\left( \overline{c}^*-r_3^*-\left( D_1\dfrac{\partial z_c}{\partial \rho } (1,\tau )\right) \right) {\overline{c}}_0(\tau ){\text{ d }}\tau + \int _0^T\left( \overline{w}^*-r_4^*\right. \\&\quad \left. -\left( D_2\dfrac{\partial z_w}{\partial \rho }(1,\tau )\right) \right) {\overline{w}}_0(\tau ){\text{ d }}\tau \Big ) \ge 0. \end{aligned}$$

Therefore, from tangent-normal cone techniques [21] and (45)–(48), \((u_1^*,u_2^*,{\overline{c}}^*,{\overline{w}}^*)\) is as follows:

$$\begin{aligned}&u_1^*=\mathcal {F}_1(-z_c+r_1^*),~u_2^*=\mathcal {F}_2(-z_w+r_2^*),~ {\overline{c}}^*=\mathcal {F}_3\left( D_1\dfrac{\partial z_c}{\partial \rho }(1,\tau )+r_3^*\right) ,\\&{\overline{w}}^* =\mathcal {F}_4\left( D_2\dfrac{\partial z_w}{\partial \rho }(1,\tau )+r_4^*\right) . \end{aligned}$$

Finally, in a similar manner to the proof of Theorem 2.2, the desired result is obtained. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmaili, S., Eslahchi, M.R. Optimal Control for a Parabolic–Hyperbolic Free Boundary Problem Modeling the Growth of Tumor with Drug Application. J Optim Theory Appl 173, 1013–1041 (2017). https://doi.org/10.1007/s10957-016-1037-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-016-1037-4

Keywords

Mathematics Subject Classification

Navigation