Skip to main content
Log in

Directional Hölder Metric Regularity

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper sheds new light on regularity of multifunctions through various characterizations of directional Hölder/Lipschitz metric regularity, which are based on the concepts of slope and coderivative. By using these characterizations, we show that directional Hölder/Lipschitz metric regularity is stable, when the multifunction under consideration is perturbed suitably. Applications of directional Hölder/Lipschitz metric regularity to investigate the stability and the sensitivity analysis of parameterized optimization problems are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borwein, J.M., Zhuang, D.M.: Verifiable necessary and sufficient conditions for openness and regularity for set-valued and single-valued maps. J. Math. Anal. Appl. 134, 441–459 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Klatte, D., Kummer, B.: Nonsmooth equations in optimization, regularity, calculus, methods and applications. In: P. Pardalos Nonconvex Optimization and its Applications, vol. 60. Springer, New York (2002)

  3. Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings. Springer series in operations research and financial engineering, second edn. Springer, New York (2014)

    MATH  Google Scholar 

  4. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation. I : Basic Theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 330. Springer, Berlin (2006)

  5. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation. II : Applications, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 331. Springer, Berlin (2006)

  6. Penot, J.P.: Calculus Without Derivatives, Graduate Texts in Mathematics, vol. 266. Springer, New York (2013)

    Book  Google Scholar 

  7. Ioffe, A.: Metric regularity: Theory and applications: a survey. In preparation (2015)

  8. Azé, D.: A survey on error bounds for lower semicontinuous functions. In: Penot, J.-P. (ed.) Proceedings of 2003 MODE-SMAI Conference of ESAIM Proceedings, vol. 13, pp. 1–17. EDP Sci., Les Ulis (2003)

    Google Scholar 

  9. Azé, D.: A unified theory for metric regularity of multifunctions. J. Convex Anal. 13(2), 225–252 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer series in operations research. Springer, New York (2000)

    Book  MATH  Google Scholar 

  11. Borwein, J.M., Dontchev, A.L.: On the Bartle–Graves theorem. Proc. Am. Math. Soc. 131(8), 2553–2560 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Borwein, J.M., Zhu, Q.J.: Viscosity solutions and viscosity subderivatives in smooth Banach spaces with applications to metric regularity. SIAM J. Control Optim. 34, 1568–1591 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cominetti, R.: Metric regularity, tangent sets, and second-order optimality conditions. Appl. Math. Optim. 21(3), 265–287 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dmitruk, A.V., Kruger, A.Y.: Metric regularity and systems of generalized equations. J. Math. Anal. Appl. 342(2), 864–873 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dmitruk, A.V., Kruger, A.Y.: Extensions of metric regularity. Optimization 58(5), 561–584 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Frankowska, H.: Some inverse mapping theorems. Ann. Inst. H. Poincaré Anal. Non Linéaire 7(3), 183–234 (1990)

    MathSciNet  MATH  Google Scholar 

  17. Frankowska, H., Quincampoix, M.: Hölder metric regularity of set-valued maps. Math. Program. 132(1–2, Ser. A), 333–354 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ioffe, A.D.: Metric regularity and subdifferential calculus. Russ. Math. Surv. 55, 501–558 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ioffe, A.D.: Towards variational analysis in metric spaces: metric regularity and fixed points. Math. Program. Ser. B 123(1), 241–252 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jourani, A., Thibault, L.: Metric regularity and subdifferential calculus in Banach spaces. Set-Valued Anal. 3(1), 87–100 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jourani, A., Thibault, L.: Coderivatives of multivalued mappings, locally compact cones and metric regularity. Nonlinear Anal. 35(7), 925–945 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lyusternik, L.: On conditional extrema of functionals. Math. Sb. 41, 390–401 (1934). In Russian

    Google Scholar 

  23. Mordukhovich, B.S., Shao, Y.: Stability of set-valued mappings in infinite dimensions: point criteria and applications. SIAM J. Control Optim. 35(1), 285–314 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ngai, H.V., Théra, M.: Error bounds and implicit multifunction theorem in smooth Banach spaces and applications to optimization. Set-Valued Anal. 12(1–2), 195–223 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Penot, J.P.: Metric regularity, openness and Lipschitz behavior of multifunctions. Nonlinear Anal. 13, 629–643 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ioffe, A.D.: Nonlinear regularity models. Math. Program. 139(1–2), 223–242 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, G., Mordukhovich, B.S.: Hölder metric subregularity with applications to proximal point method. SIAM J. Optim. 22(4), 1655–1684 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mordukhovich, B.S., Ouyang, W.: Higher-order metric subregularity and its applications. J. Global Opt. (2015). doi:10.1007/s10898-015-0271-x

  29. Arutyunov, A.V., Avakov, E.R., Izmailov, A.F.: Directional regularity and metric regularity. SIAM J. Optim. 18(3), 810–833 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Arutyunov, A.V., Izmailov, A.F.: Directional stability theorem and directional metric regularity. Math. Oper. Res. 31(3), 526–543 (2006). doi:10.1287/moor.1060.0203

  31. Ioffe, A.: On regularity concepts in variational analysis. J. Fixed Point Theory Appl. 8(2), 339–363 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Gfrerer, H.: On directional metric subregularity and second-order optimality conditions for a class of nonsmooth mathematical programs. SIAM J. Optim. 23(1), 632–665 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Gfrerer, H.: On directional metric regularity, subregularity and optimality conditions for nonsmooth mathematical programs. Set-Valued Var. Anal. 21(2), 151–176 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Penot, J.P.: Second-order conditions for optimization problems with constraints. SIAM J. Control Optim. 37(1), 303–318 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ngai, H.V., Tron, N.H., Tinh, P.N.: Directional Hölder metric subregularity and application to tangent cones (preprint)

  36. Rockafellar, R.T., Wets, R.J.-B.: Variational analysis. In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 317. pp. xiv+733, Springer-Verlag, Berlin (1998)

  37. Kruger, A.Y.: Error bounds and Hölder metric subregularity. arXiv:1411.6414 (2015)

  38. Kruger, A.Y.: Error bounds and metric subregularity. Optimization 64(1), 49–79 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Giorgi, E.D., Marino, A., Tosques, M.: Problems of evolution in metric spaces and maximal decreasing curve. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 68(3), 180–187 (1980)

    MathSciNet  MATH  Google Scholar 

  40. Azé, D., Corvellec, J.N.: Characterizations of error bounds for lower semicontinuous functions on metric spaces. ESAIM Control Optim. Calc. Var. 10(3), 409–425 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. Fabian, M.J., Henrion, R., Kruger, A.Y., Outrata, J.V.: About error bounds in metric spaces. In: D. Klatte, H.J. Lüthi, K. Schmedders (eds.) Operations Research Proceedings 2011. Selected Papers of the International Conference on Operations Research (OR 2011), August 30–September 2, 2011, Zurich, Switzerland, pp. 33–38. Springer, Berlin (2012)

  42. Dontchev, A.L., Lewis, A.S., Rockafellar, R.T.: The radius of metric regularity. Trans. Am. Math. Soc. 355(2), 493–517 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  43. Dontchev, A., Lewis, A.: Perturbations and metric regularity. Set-Valued Anal. 13(4), 417–438 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  44. Ngai, H.V., Théra, M.: Error bounds in metric spaces and application to the perturbation stability of metric regularity. SIAM J. Optim. 19(1), 1–20 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  45. Gfrerer, H.: First order and second order characterizations of metric subregularity and calmness of constraint set mappings. SIAM J. Optim. 21(4), 1439–1474 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  46. Ngai, H.V., Tinh, P.N.: Metric subregularity of multifunctions: First and second order infinitesimal characterizations. Math. Oper. Res. 40(3), 703–724 (2015)

Download references

Acknowledgments

Many thanks to the referees for their helpful comments and suggestions which have led to an improved paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Théra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Research partially supported by Ministerio de Economıa y Competitividad under Grant MTM2011-29064-C03(03), by LIA “FormathVietnam” and by NAFOSTED.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Ngai, H., Tron, N.H. & Théra, M. Directional Hölder Metric Regularity. J Optim Theory Appl 171, 785–819 (2016). https://doi.org/10.1007/s10957-015-0797-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-015-0797-6

Keywords

Mathematics Subject Classification

Navigation