Skip to main content
Log in

Metric regularity, tangent sets, and second-order optimality conditions

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

A strong regularity theorem is proved, which shows that the usual constraint qualification conditions ensuring the regularity of the set-valued maps expressing feasibility in optimization problems, are in fact minimal assumptions. These results are then used to derive calculus rules for second-order tangent sets, allowing us in turn to obtain a second-order (Lagrangian) necessary condition for optimality which completes the usual one of positive semidefiniteness on the Hessian of the Lagrangian function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Attouch H., Brezis H. Duality for the sum of convex functions in general Banach spaces. Aspects of Mathematics and Its Applications (J. A. Barroso ed.), Elsevier, Amsterdam (1986), pp. 125–133.

    Chapter  Google Scholar 

  2. Aubin J.-P. Lipschitz behavior of solutions to convex minimization problems. Math. Oper. Res. 9(1984), 87–111.

    Article  MathSciNet  MATH  Google Scholar 

  3. Aubin J.-P., Ekeland I. Applied Nonlinear Analysis. Wiley, New York (1984).

    MATH  Google Scholar 

  4. Auslender A. Stability in mathematical programming with nondifferentiable data. SIAM J. Control Optim. 22(1984), 239–254.

    Article  MathSciNet  MATH  Google Scholar 

  5. Auslender A., Crouzeix J.-P. Global regularity theorems. Submitted (1987).

  6. Ben-Israel A., Ben-Tal A., Zlobec S. Optimality in Nonlinear Programming. Wiley, New York (1981).

    MATH  Google Scholar 

  7. Ben-Tal A., Zowe J. Necessary and sufficient conditions for a class of nonsmooth minimization problems. Math. Programming 24(1982), 70–91.

    Article  MathSciNet  MATH  Google Scholar 

  8. Ben-Tal A., Zowe J. A unified theory of first-and second-order conditions for extremum problems in topological vector spaces. Math. Programming Stud. 19(1982), 39–76.

    Article  MathSciNet  MATH  Google Scholar 

  9. Ben-Tal A., Zowe J. Second-order optimality conditions for the 1 minimization problem. Appl. Math. Optim. 13(1985), 45–58.

    Article  MathSciNet  MATH  Google Scholar 

  10. Borwein J. M. Stability and regular points of inequality systems. J. Optim. Theory Appl. 48(1986), 9–52.

    Article  MathSciNet  MATH  Google Scholar 

  11. Dmitruk A., Milyutin A., Osmolowskii N. Lyusternik's theorem and the theory of extrema. Russian Math. Surveys 35(1980), 11–51.

    Article  MATH  Google Scholar 

  12. Graves L. M. Some mapping theorems. Duke Math. J. 17(1950), 111–114.

    Article  MathSciNet  MATH  Google Scholar 

  13. Ioffe A. D. Regular points of lipschitz functions. Trans. Amer. Math. Soc. 251(1979), 61–69.

    Article  MathSciNet  MATH  Google Scholar 

  14. Ioffe A. D. On the local surjection property. Nonlinear Anal. Theory Meth. Appl. 11(1987), 565–592.

    Article  MathSciNet  MATH  Google Scholar 

  15. Jofre A., Penot J.-P. Comparing new notions of tangent cones. London Math. J. To appear.

  16. Jourani A., Thibault L. Approximate subdifferential and metric regularity: finite dimensional case. Submitted (1987).

  17. Kawasaki H. An envelope-like effect of infinitely many inequality constraints on second-order necessary conditions for minimization problems. Math. Programming 41(1988), 73–96.

    Article  MathSciNet  MATH  Google Scholar 

  18. Kurcyusz S., Zowe J. Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim. 5(1979), 49–62.

    Article  MathSciNet  MATH  Google Scholar 

  19. Lyusternik L. Conditional extrema of functionals. Math. USSR-Sb. 41 (1934), 390–401.

    Google Scholar 

  20. Penot J. P. On regularity conditions in mathematical programming. Math. Programming Stud. 19(1982), 167–199.

    Article  MathSciNet  MATH  Google Scholar 

  21. Robinson S. Stability theorems for systems of inequalities, Part I: linear systems. SIAM J. Numer. Anal. 12(1975), 754–769.

    Article  MathSciNet  MATH  Google Scholar 

  22. Robinson S. Stability theorems for systems of inequalitiies, Part II: differentiable nonlinear systems. SIAM J. Numer. Anal. 13(1976), 497–513.

    Article  MathSciNet  Google Scholar 

  23. Robinson S. Regularity and stability for convex multivalued functions. Math. Oper. Res. 1(1976), 130–143.

    Article  MathSciNet  MATH  Google Scholar 

  24. Rockafellar R. T. Lipschitzian properties of multifunctions. Nonlinear Anal. Theory Meth. Appl. 9(1985), 867–885.

    Article  MathSciNet  MATH  Google Scholar 

  25. Rockafellar R. T. First- and second-order pseudo-differentiability in nonlinear programming. Submitted (1987).

  26. Rockafellar R. T. Pseudo-differentiability of set-valued mappings and its applications in optimization. Submitted (1987).

  27. Terpolilli P. Optimisation en un point singulier. Thesis, Université de Pau et des Pays de l'Adour (1982).

  28. Ursescu C. Multifunctions with convex closed graph. Czechoslovak Math. J. 25(1975), 100.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Stoer

On leave from Universidad de Chile, Casilla 170/3 Correo 3, Santiago, Chile.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cominetti, R. Metric regularity, tangent sets, and second-order optimality conditions. Appl Math Optim 21, 265–287 (1990). https://doi.org/10.1007/BF01445166

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01445166

Keywords

Navigation