Skip to main content
Log in

Semivectorial Bilevel Optimization on Riemannian Manifolds

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we deal with the semivectorial bilevel problem in the Riemannian setting. The upper level is a scalar optimization problem to be solved by the leader, and the lower level is a multiobjective optimization problem to be solved by several followers acting in a cooperative way inside the greatest coalition and choosing among Pareto solutions with respect to a given ordering cone. For the so-called optimistic problem, when the followers choice among their best responses is the most favorable for the leader, we give optimality conditions. Also for the so-called pessimistic problem, when there is no cooperation between the leader and the followers, and the followers choice may be the worst for the leader, we present an existence result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We use the notations “MIN” and “ARGMIN” for vector-valued functions to distinguish from the notations “min” and “argmin” used for scalar-valued functions.

  2. This fact is not true in general, i.e., when C is a cone in a topological vector space, but in our setting, we take advantage of the finite dimension of \(\mathbb {R}^r\).

  3. This hypothesis holds, for example, if we assume that G is a conformal map, or, for example, if there exists a real number \(c > 0\) such that \(g_2 (\delta _2 G (\lambda _0 , x_0 , y_0) (v),v) \ge c g_2 (v,v),\;\forall v \in T_yM_2\).

  4. i.e., there exists an open neighborhood \(\mathcal {N}=\mathcal {N}_1\times \mathcal {N}'\subset M_1\times \Lambda _p\) of \((x^*,\lambda ^*)\) such that, for each \(x\in \mathcal {N}_1\), the function \(\mathcal {N}'\ni \lambda \mapsto f(x,y(x,\lambda ))\) admits local minimizers, and for all \(x\in \mathcal {N}_1\), \(f(x^*,\lambda ^*) \le \min _{\lambda \in \mathcal {N}'}f(x,y(x,\lambda ))\).

References

  1. Edgeworth, F.Y.: Mathematical Psychics. Kegan Paul, London (1881)

    Google Scholar 

  2. Pareto, V.: Cours d’Economie Politique. F. Rouge, Lausanne (1896)

    Google Scholar 

  3. Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: Neyman, J. (ed.) Proceedings of the Second Berkley Symposium on Mathematical Statistics and Probability, pp. 481–492. University of California Press, Berkley (1951)

    Google Scholar 

  4. Bonnel, H., Morgan, J.: Semivectorial bilevel optimization problem: penalty approach. J. Optim. Theory Appl. 131(3), 365–382 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bonnel, H.: Optimality conditions for the semivectorial bilevel optimization problem. Pac. J. Optim. 2(3), 447–468 (2006)

    MATH  MathSciNet  Google Scholar 

  6. Ankhili, Z., Mansouri, A.: An exact penalty on bilevel programs with linear vector optimization lower level. Eur. J. Oper. Res. 197, 36–41 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Eichfelder, G.: Multiobjective bilevel optimization. Math. Program. Ser. A 123, 419–449 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Calvete, H., Galé, C.: On linear bilevel problems with multiple objectives at the lower level. Omega 39, 33–40 (2011). Elsevier

    Article  Google Scholar 

  9. Zheng, Y., Wan, Z.: A solution method for semivectorial bilevel programming problem via penalty method. J. Appl. Math. Comput. 37, 207–219 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dempe, S., Gadhi, N., Zemkoho, A.B.: New optimality conditions for the semivectorial bilevel optimization problem. J. Optim. Theory Appl. 157(1), 54–74 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bonnel, H., Morgan, J.: Semivectorial bilevel convex optimal control problems: an existence result. SIAM J. Control Optim. 50(6), 3224–3241 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bonnel, H., Morgan, J.: Optimality conditions for semivectorial bilevel convex optimal control problems. In: Bailey, D.H., Bauschke, H.H., Borwein, P., Garvan, F., Théra, M., Vanderwerff, J.D., Wolkowicz, H. (eds.) Computational and Analytical Mathematics in Honor of Jonathan Borwein’s 60th Birthday, pp. 43–74. Springer, Berlin (2013). ISBN: 978-1-4614-7620-7

  13. Philip, J.: Algorithms for the vector maximization problem. Math. Program. 2, 207–229 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  14. Benson, H.P.: Optimization over the efficient set. J. Math. Anal. Appl. 98, 562–580 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  15. Craven, B.D.: Aspects of multicriteria optimization. In: Recent Developments in Mathematical Programming, pp. 93–100 (1991)

  16. Benson, H.P.: A finite, non-adjacent extreme point search algorithm for optimization over the efficient set. J. Optim. Theory Appl. 73, 47–64 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. Bolintinéanu, S.: Minimization of a quasi-concave function over an efficient set. Math. Program. 61, 89–110 (1993)

    Article  MATH  Google Scholar 

  18. Bolintinéanu, S.: Optimality conditions for minimization over the (weakly or properly) efficient set. J. Math. Anal. Appl. 173(2), 523–541 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  19. Bolintinéanu, S.: Necessary conditions for nonlinear suboptimization over the weakly-efficient set. J. Optim. Theory Appl. 78, 579–598 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  20. Dauer, J.P.: Optimization over the efficient set using an active constraint approach. J. Oper. Res. 35, 185–195 (1991)

    MATH  MathSciNet  Google Scholar 

  21. Fülöp, J.: A cutting plane algorithm for linear optimization over the efficient set. In: Komlósi, S., Rapcsák, T., Schaible, S. (eds.) Generalized Convexity. Lecture Notes in Economics and Mathematical System, vol. 405, pp. 374–385. Springer, Berlin (1994)

  22. Dauer, J.P., Fosnaugh, T.A.: Optimization over the efficient set. J. Glob. Optim. 7, 261–277 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  23. Konno, H., Thach, P.T., Yokota, D.: Dual approach to minimization on the set of pareto-optimal solutions. J. Optim. Theory Appl. 88, 689–707 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  24. Bolintinéanu, S., El Maghri, M.: Pénalisation dans l’optimisation sur l’ensemble faiblement efficient. RAIRO Oper. Res. 31(3), 295–310 (1997)

    MATH  Google Scholar 

  25. Horst, R., Thoai, N.V.: Maximizing a concave function over the efficient or weakly-efficient set. Eur. J. Oper. Res. 117, 239–252 (1999)

    Article  MATH  Google Scholar 

  26. Horst, R., Thoai, N.V., Yamamoto, Y., Zenke, D.: On optimization over the efficient set in linear multicriteria programming. J. Optim. Theory Appl. 134, 433–443 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Bonnel, H., Kaya, C.Y.: Optimization over the efficient set of multi-objective control problems. J. Optim. Theory Appl. 147(1), 93–112 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  28. Bonnel, H., Collonge, J.: Stochastic optimization over a pareto set associated with a stochastic multiobjective optimization problem. J. Optim. Theory Appl. 162(2), 405–427 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  29. Bonnel, H., Collonge, J.: Optimization over the pareto outcome set associated with a convex bi-objective optimization problem: theoretical results, deterministic algorithm and application to the stochastic case. J. Glob. Optim. (in press). doi:10.1007/s10898-014-0257-0

  30. Yamamoto, Y.: Optimization over the efficient set: an overview. J. Glob. Optim. 22, 285–317 (2002)

    Article  MATH  Google Scholar 

  31. Morgan, J.: Constrained well-posed two-level optimization problems. In: Clarke, F., Dem’yanov, V.F., Giannessi, F. (eds.) Nonsmooth Optimization and Related Topics, Ettore Majorana International Sciences Series, pp. 307–326. Plenum Press, New York (1989)

    Chapter  Google Scholar 

  32. Loridan, P., Morgan, J.: New results on approximate solutions in two-level optimization. Optimization 20, 819–836 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  33. Lignola, M.B., Morgan, J.: Stability of regularized bilevel programming problems. J. Optim. Theory Appl. 93, 575–596 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  34. Dempe, S.: Foundations of Bilevel Programming. Kluwer, Dordrecht (2002)

    MATH  Google Scholar 

  35. Colson, B., Marcotte, P., Savard, G.: An overview of bilevel optimization. Ann. Oper. Res. 153, 235–256 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  36. Dempe, S.: Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints. Optimization 52, 333–359 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  37. Udrişte, C.: Convex Functions and Optimization Methods on Riemannian Manifolds, Mathematics and Its Applications, vol. 297. Kluwer, Dordrecht (1994)

    Book  Google Scholar 

  38. Da Cruz Neto, J.X., Ferreira, O.P., Lucâmbio Pérez, L.R., Németh, S.Z.: Convex-and monotone-transformable mathematical programming problems and a proximal-like point method. J. Glob. Optim. 35, 53–69 (2006)

    Article  MATH  Google Scholar 

  39. Bento, G.C., Melo, J.G.: Subgradient method for convex feasibility on riemannian manifolds. J. Optim. Theory Appl. 152, 773–785 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  40. Colao, V., López, G., Marino, G., Martín-Márquez, V.: Equilibrium problems in Hadamard manifolds. J. Math. Anal. Appl. 388, 61–77 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  41. Ferreira, O.P., Iusem, A.N., Németh, S.Z.: Concepts and techniques of optimization on the sphere. TOP 22, 1148–1170 (2014). doi:10.1007/s11750-014-0322-3

    Article  MathSciNet  Google Scholar 

  42. Bento, G.C., Ferreira, O.P., Olivera, P.R.: Unconstrained steepest descent method for multicriteria optimization on Riemannian manifolds. J. Optim. Theory Appl. 154, 88–107 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  43. Bento, G.C., Cruz Neto, J.X.: A subgradient method for multiobjective optimization on Riemannian manifolds. J. Optim. Theory Appl. 159, 125–137 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  44. Bento, G.C., Cruz Neto, J.X., Santos, P.S.M.: An inexact steepest descent method for multicriteria optimization on Riemannian manifolds. J. Optim. Theory Appl. 159, 108–124 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  45. Yu, P.L.: Multiple-Criteria Decision Making: Concepts, Techniques, and Extensions. Mathematical Concepts and Methods in Science and Engineering, vol. 30. Plenum Press, New York (1985)

    Book  Google Scholar 

  46. Luc, D.T.: Theory of Vector Optimization. Lecture Notes in Econom. and Math. Systems, vol. 319. Springer, Berlin (1989)

    Google Scholar 

  47. Miettinen, K.M.: Nonlinear Multiobjective Optimization. Kluwer, Dordrecht (1998)

    Book  Google Scholar 

  48. Ehrgott, M.: Multicriteria Optimization. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  49. Jahn, J.: Vector Optimization. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  50. Eichfelder, G.: Adaptive Scalarization Methods in Multiobjective Optimization. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  51. Do Carmo, M.P.: Riemannian Geometry. Birkhäseruser, Boston (1993)

    Google Scholar 

  52. Jost, J.: Riemannian Geometry and Geometric Analysis. Springer, Berlin (2005)

    MATH  Google Scholar 

  53. Clarke, F.: Functional Analysis, Calculus of Variations and Optimal Control. Springer, London (2013)

    Book  MATH  Google Scholar 

  54. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the anonymous referees for their useful comments and suggestions which have improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henri Bonnel.

Additional information

Communicated by Johannes Jahn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonnel, H., Todjihoundé, L. & Udrişte, C. Semivectorial Bilevel Optimization on Riemannian Manifolds. J Optim Theory Appl 167, 464–486 (2015). https://doi.org/10.1007/s10957-015-0789-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-015-0789-6

Keywords

Mathematics Subject Classification

Navigation