Skip to main content
Log in

Least Squares Solution of the Linear Operator Equation

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The least squares problems have wide applications in inverse Sturm–Liouville problem, particle physics and geology, inverse problems of vibration theory, control theory, digital image and signal processing. In this paper, we discuss the solution of the operator least squares problem. By extending the conjugate gradient least squares method, we propose an efficient matrix algorithm for solving the operator least squares problem. The matrix algorithm can find the solution of the problem within a finite number of iterations in the absence of round-off errors. Some numerical examples are given to illustrate the effectiveness of the matrix algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Epton, M.: Methods for the solution of \(AXD-BXC = E\) and its applications in the numerical solution of implicit ordinary differential equations. BIT 20, 341–345 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. Hyland, C., Bernstein, D.: The optimal projection equations for fixed-order dynamic compensation. IEEE Trans. Control AC–29, 1034–1037 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Calvetti, D., Reichel, L.: Application of ADI iterative methods to the restoration of noisy images. SIAM J. Matrix Anal. Appl. 17, 165–186 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fletcher, L.R., Kuatsky, J., Nichols, N.K.: Eigenstructure assignment in descriptor systems. IEEE Trans. Autom. Control 31, 1138–1141 (1986)

    Article  MATH  Google Scholar 

  5. Dai, L.: Singular Control Systems. Springer, New York (1989)

    Book  MATH  Google Scholar 

  6. Duan, G.R.: The solution to the matrix equation \(AV+BW=EVJ+R\). Appl. Math. Lett. 17, 1197–1202 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Frank, P.M.: Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy—a survey and some new results. Automatica 26, 459–474 (1990)

    Article  MATH  Google Scholar 

  8. Chan, H., Lam, J., Ho, D.W.C.: Robust eigenvalue assignment in second-order systems: a gradient flow approach. Optim. Control Appl. Methods 18, 283–296 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Duan, G.R., Zhou, B.: Solution to the second-order Sylvester matrix equation \(MVF^2-DVF-KV=BW\). IEEE Trans. Autom. Control 51, 805–809 (2006)

    Article  MathSciNet  Google Scholar 

  10. Hajarian, M.: A finite iterative method for solving the general coupled discrete-time periodic matrix equations. Circuits Syst. Signal Process. 34, 105–125 (2015)

    Article  MathSciNet  Google Scholar 

  11. Hajarian, M.: A gradient-based iterative algorithm for generalized coupled Sylvester matrix equations over generalized centro-symmetric matrices. Trans. Inst. Meas. Control 36, 252–259 (2014)

    Article  Google Scholar 

  12. Hajarian, M.: Developing the CGLS algorithm for the least squares solutions of the general coupled matrix equations. Math. Methods Appl. Sci. 37, 2782–2798 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hajarian, M.: Finite algorithms for solving the coupled Sylvester-conjugate matrix equations over reflexive and Hermitian reflexive matrices. Int. J. Syst. Sci. 46, 488–502 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hajarian, M.: Matrix form of the CGS method for solving general coupled matrix equations. Appl. Math. Lett. 34, 37–42 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hajarian, M.: Solving the general coupled and the periodic coupled matrix equations via the extended QMRCGSTAB algorithms. Comput. Appl. Math. 33, 349–362 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhou, B., Duan, G.R.: An explicit solution to the matrix equation \(AX-XF=BY\). Linear Algebra Appl. 402, 345–366 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhou, B., Duan, G.R., Li, Z.Y.: Gradient based iterative algorithm for solving coupled matrix equations. Syst. Control Lett. 58, 327–333 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Peng, Z., Xin, H.: The reflexive least squares solutions of the general coupled matrix equations with a submatrix constraint. Appl. Math. Comput. 225, 425–445 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Hajarian, M., Dehghan, M.: The generalized centro-symmetric and least squares generalized centro-symmetric solutions of the matrix equation \(AYB + CY^TD = E\). Math. Meth. Appl. Sci. 34, 1562–1579 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dehghan, M., Hajarian, M.: The general coupled matrix equations over generalized bisymmetric matrices. Linear Algebra Appl. 432, 1531–1552 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dehghan, M., Hajarian, M.: An iterative method for solving the generalized coupled Sylvester matrix equations over generalized bisymmetric matrices. Appl. Math. Model. 34, 639–654 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hajarian, M.: Matrix iterative methods for solving the Sylvester-transpose and periodic Sylvester matrix equations. J. Franklin Inst. 350, 3328–3341 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, Q.W., Woude, J.W., Chang, H.X.: A system of real quaternion matrix equations with applications. Linear Algebra Appl. 431, 2291–2303 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, Q.W., Li, C.K.: Ranks and the least-norm of the general solution to a system of quaternion matrix equations. Linear Algebra Appl. 430, 1626–1640 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, Q.W., Chang, H.X., Ning, Q.: The common solution to six quaternion matrix equations with applications. Appl. Math. Comput. 198, 209–226 (2008)

    MathSciNet  MATH  Google Scholar 

  26. Wang, Q.W., Zhang, F.: The reflexive re-nonnegative definite solution to a quaternion matrix equation. Electron. J. Linear Algebra 17, 88–101 (2008)

    MathSciNet  MATH  Google Scholar 

  27. Zhou, B., Duan, G.R.: An explicit solution to the matrix equation \(AX-XF=BY\). Linear Algebra Appl. 402, 345–366 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhou, B., Lam, J., Duan, G.R.: On Smith-type iterative algorithms for the Stein matrix equation. Appl. Math. Lett. 22, 1038–1044 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gu, C., Xue, H.: A shift-splitting hierarchical identification method for solving Lyapunov matrix equations. Linear Algebra Appl. 430, 1517–1530 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ding, F., Chen, T.: Gradient based iterative algorithms for solving a class of matrix equations. IEEE Trans. Autom. Control 50, 1216–1221 (2005)

    Article  MathSciNet  Google Scholar 

  31. Ding, F., Liu, P.X., Ding, J.: Iterative solutions of the generalized Sylvester matrix equations by using the hierarchical identification principle. Appl. Math. Comput. 197, 41–50 (2008)

    MathSciNet  MATH  Google Scholar 

  32. Ding, F., Chen, T.: Hierarchical gradient-based identification of multivariable discrete-time systems. Automatica 41, 315–325 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ding, F., Chen, T.: Hierarchical least squares identification methods for multivariable systems. IEEE Trans. Autom. Control 50, 397–402 (2005)

    Article  MathSciNet  Google Scholar 

  34. Li, S.K., Huang, T.Z.: LSQR iterative method for generalized coupled Sylvester matrix equations. Appl. Math. Model. 36, 3545–3554 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hajarian, M.: A matrix LSQR algorithm for solving constrained linear operator equations. Bull. Iran. Math. Soc. 40, 41–53 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Zhou, B., Lam, J., Duan, G.R.: Gradient-based maximal convergence rate iterative method for solving linear matrix equations. Int. J. Comput. Math. 87, 515–527 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Peng, Z.: The reflexive least squares solutions of the matrix equation \(A_1X_1B_1+A_2X_2B_2+\)..\(+A_lX_lB_l=C\) with a submatrix constraint. Numer. Algorithms 64, 455–480 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wu, A.G., Lv, L.L., Hou, M.Z.: Finite iterative algorithms for a common solution to a group of complex matrix equations. Appl. Math. Comput. 218, 1191–1202 (2011)

    MathSciNet  MATH  Google Scholar 

  39. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, NewYork (1991)

    Book  MATH  Google Scholar 

  40. Wang, R.C.: Funct. Anal. Optim. Theory. Beijing University of Aeronautics and Astronautics Press, Beijing (2003)

    Google Scholar 

  41. Björck, Å.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia (1996)

    Book  MATH  Google Scholar 

  42. Paige, C.C., Saunders, M.A.: LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Softw. 8, 43–71 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  43. Bai, Z.-Z.: On Hermitian and skew-Hermitian splitting iteration methods for continuous Sylvester equations. J. Comput. Math. 29, 185–198 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Hajarian.

Additional information

Communicated by Ilio Galligani.

Appendix

Appendix

1.1 The proof of Lemma 3.1

Step 1. Noting that the inner product is commutative, it is enough to prove three statements of Lemma 3.1 for \(1\le u< v\le r.\) For \(u=1\) and \(v=2\), we get

$$\begin{aligned} \langle S(1),S(2)\rangle= & {} \langle S(1), S(1)-\delta (1)(\mathcal {F}^\mathrm{adj}(Q( 1))) \rangle \nonumber \\= & {} ||S(1)||^2-\delta (1)\langle \mathcal {F}(S(1)),Q( 1)\rangle \nonumber \\= & {} ||S(1)||^2-\delta (1)\langle Q( 1),Q( 1)\rangle =0, \end{aligned}$$
(26)
$$\begin{aligned} \langle Q(1),Q(2)\rangle= & {} \langle Q(1),\mathcal {F}(P(2))\rangle = \langle Q(1),\mathcal {F}(S(2)+\lambda (1)P(1))\rangle \nonumber \\= & {} \lambda (1)|| Q(1)||^2+\langle \mathcal {F}^\mathrm{adj}(Q(1)),S(2)\rangle \nonumber \\= & {} \lambda (1)|| Q(1)||^2-\frac{1}{\delta (1)}\langle \mathcal {F}^{adj}(R(2)-R(1)),S(2)\rangle \nonumber \\= & {} \lambda (1)|| Q(1)||^2-\frac{1}{\delta (1)}\langle S(2)-S(1),S(2)\rangle =0, \end{aligned}$$
(27)

and

$$\begin{aligned} = \langle P(1),S(2)\rangle =\langle S(1),S(2)\rangle =0. \end{aligned}$$
(28)

Hence, (I)–(III) hold for \(u=1\) and \(v=2\).

Step 2. In this step, for \(u<w<r\), we assume that

$$\begin{aligned} \langle S(u),S(w)\rangle =0,~~~ \langle Q(u),Q(w)\rangle =0, ~~~ \langle P(u),S(w)\rangle =0. \end{aligned}$$

We can get

$$\begin{aligned} \langle S(u),S(w+1)\rangle= & {} \langle S(u),S(w)-\delta (w)(\mathcal {F}^{adj}(Q( w))\rangle =-\delta (w)\langle \mathcal {F}(S(u)),Q( w)\rangle \nonumber \\= & {} -\delta (w)\langle \mathcal {F}(P(u)-\lambda (u-1)P(u-1)),Q( w)\rangle \nonumber \\= & {} -\delta (w)\langle Q(u)-\lambda (u-1)Q(u-1),Q( w)\rangle =0, \end{aligned}$$
(29)
$$\begin{aligned} \langle Q(u),Q(w+1)\rangle= & {} \langle Q(u),\mathcal {F}(P(w+1))\rangle =\langle Q(u),\mathcal {F}(S(w+1)+\lambda (w)P(w))\rangle \nonumber \\= & {} \langle Q(u),\mathcal {F}(S(w+1))+\lambda (w)Q(w)\rangle \nonumber \\= & {} -\frac{1}{\delta (u)}\langle R(u+1)-R(u),\mathcal {F}(S(w+1))\rangle \nonumber \\= & {} -\frac{1}{\delta (u)}\langle R(u+1)-R(u),\mathcal {F}(S(w+1))\rangle \nonumber \\= & {} -\frac{1}{\delta (u)}\langle \mathcal {F}^{adj}(R(u+1))-\mathcal {F}^{adj}(R(u)),S(w+1)\rangle \nonumber \\= & {} -\frac{1}{\delta (u)}\langle S(u+1)-S(u),S(w+1)\rangle =0, \end{aligned}$$
(30)

and

$$\begin{aligned} \langle P(u),S(w+1)\rangle= & {} \langle P(u),S(w)-\delta (w)(\mathcal {F}^{adj}(Q(w))\rangle \nonumber \\= & {} -\delta (w)\langle \mathcal {F}(P(u)), Q(w)\rangle \nonumber \\= & {} -\delta (w)\langle Q(u), Q(w)\rangle =0. \end{aligned}$$
(31)

Furthermore, for \(u=w\), we can write

$$\begin{aligned} \langle S(w),S(w+1)\rangle= & {} \langle S(w),S(w)-\delta (w)(\mathcal {F}^{adj}(Q( w))\rangle \nonumber \\= & {} ||S(w)||^2-\delta (w) \langle S(w),\mathcal {F}^{adj}(Q( w))\rangle \nonumber \\= & {} ||S(w)||^2-\delta (w) \langle \mathcal {F}( P(w)-\lambda (w-1)P(w-1)), Q( w)\rangle \nonumber \\= & {} ||S(w)||^2\!-\!\delta (w) \langle Q(w)\!-\!\lambda (w\!-\!1)Q(w\!-\!1), Q(w)\rangle \!=\!0,\quad \end{aligned}$$
(32)
$$\begin{aligned} \langle Q(w),Q(w+1)\rangle= & {} \langle Q(w),\mathcal {F}(P(w+1))\rangle \nonumber \\= & {} \langle Q(w),\mathcal {F}(S(w+1)+\lambda (w)P(w))\rangle \nonumber \\= & {} \langle Q(w),\mathcal {F}(S(w+1))+\lambda (w)Q(w)\rangle \nonumber \\= & {} \lambda (w)||Q(w)||^2-\frac{1}{\delta (w)} \langle R(w+1)-R(w),\mathcal {F}(S(w+1))\rangle \nonumber \\= & {} \lambda (w)||Q(w)||^2-\frac{1}{\delta (w)} \langle \mathcal {F}^{adj}(R(w+1))\nonumber \\&-\mathcal {F}^\mathrm{adj}(R(w)),S(w+1)\rangle \nonumber \\= & {} \lambda (w)||Q(w)||^2-\frac{1}{\delta (w)} \langle S(w+1)-S(w),S(w+1)\rangle \nonumber \\= & {} \lambda (w)||Q(w)||^2-\frac{1}{\delta (w)}||S(w+1)||^2=0, \end{aligned}$$
(33)

and

$$\begin{aligned} \langle P(w),S(w+1)\rangle= & {} \langle P(w),S(w)-\delta (w)(\mathcal {F}^{adj}(Q(w))\rangle \nonumber \\= & {} \langle S(w)+\lambda (w-1) S(w-1) +\lambda (w-1)\lambda (w-2) S(w-2)\nonumber \\&+cdots+\lambda (w-1)/cdots\lambda (1)S(1),S(w)\rangle \nonumber \\&-\!\delta (w)\langle \mathcal {F}(P(w)),Q(w)\rangle \!=\!||S(w)||^2\!-\delta (w)\langle Q(w),Q(w)\rangle \!=\!0.\nonumber \\ \end{aligned}$$
(34)

By considering Steps 1 and 2, three statements of Lemma 3.1 hold by the principle of induction.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajarian, M. Least Squares Solution of the Linear Operator Equation. J Optim Theory Appl 170, 205–219 (2016). https://doi.org/10.1007/s10957-015-0737-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-015-0737-5

Keywords

Mathematics Subject Classification

Navigation