Skip to main content
Log in

Robust Fractional Programming

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We extend robust optimization (RO) to fractional programming, where both the objective and the constraints contain uncertain parameters. Earlier work did not consider uncertainty in both the objective and the constraints, or did not use RO. Our contribution is threefold. First, we provide conditions to guarantee that either a globally optimal solution, or a sequence converging to the globally optimal solution, can be found by solving one or more convex optimization problems. Second, we identify two cases for which an exact solution can be obtained by solving a single optimization problem: (1) when uncertainty in the numerator is independent from the uncertainty in the denominator, and (2) when the denominator does not contain an optimization variable. Third, we show that the general problem can be solved with an (iterative) root finding method. The results are demonstrated on a return on investment maximization problem, data envelopment analysis, and mean-variance optimization. We find that the robust optimal solution is only slightly more robust than the nominal solution. As a side-result, we use RO to show that two existing methods for solving fractional programs are dual to each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schaible, S., Ibaraki, T.: Fractional programming. Eur. J. Oper. Res. 12(4), 325–338 (1983)

    Article  MathSciNet  Google Scholar 

  2. Schaible, S.: Bibliography in fractional programming. Zeitschrift für Oper. Res. 26(1), 211–241 (1982)

    MathSciNet  Google Scholar 

  3. Stancu-Minasian, I.M.: A seventh bibliography of fractional programming. Adv. Model. Optim. 15(2), 309–386 (2013)

    MathSciNet  Google Scholar 

  4. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton Series in Applied Mathematics. Princeton University Press, Princeton, NJ (2009)

  5. Bertsimas, D., Brown, D.B., Caramanis, C.: Theory and applications of robust optimization. SIAM Rev. 53(3), 464–501 (2011)

    Article  MathSciNet  Google Scholar 

  6. Barros, A.I., Frenk, J.B.G., Schaible, S., Zhang, S.: A new algorithm for generalized fractional programs. Math. Programm. 72(2), 147–175 (1996)

    Article  MathSciNet  Google Scholar 

  7. Crouzeix, J.P., Ferland, J.A.: Algorithms for generalized fractional programming. Math. Programm. 52(1–3), 191–207 (1991)

    Article  MathSciNet  Google Scholar 

  8. Lin, J., Sheu, R.: Modified Dinkelbach-type algorithm for generalized fractional programs with infinitely many ratios. J. Optim. Theory Appl. 126(2), 323–343 (2005)

    Article  MathSciNet  Google Scholar 

  9. Jeyakumar, V., Li, G.Y., Srisatkunarajah, S.: Strong duality for robust minimax fractional programming problems. Eur. J. Oper. Res. 228(2), 331–336 (2013)

    Article  MathSciNet  Google Scholar 

  10. Beck, A., Ben-Tal, A.: Duality in robust optimization: primal worst equals dual best. Oper. Res. Lett. 37(1), 1–6 (2009)

    Article  MathSciNet  Google Scholar 

  11. Charnes, A., Cooper, W.W.: Programming with linear fractional functionals. Nav. Res. Logist. Q. 9(3–4), 181–186 (1962)

    Article  MathSciNet  Google Scholar 

  12. Schaible, S.: Parameter-free convex equivalent and dual programs of fractional programming problems. Zeitschrift für Oper. Res. 18(5), 187–196 (1974)

  13. Dinkelbach, W.: On nonlinear fractional programming. Manag. Sci. 13(7), 492–498 (1967)

    Article  MathSciNet  Google Scholar 

  14. Chen, H.J., Schaible, S., Sheu, R.L.: Generic algorithm for generalized fractional programming. J. Optim. Theory Appl. 141(1), 93–105 (2009)

    Article  MathSciNet  Google Scholar 

  15. Schaible, S.: Fractional programming. II, On Dinkelbach’s algorithm. Manag. Sci. 22(8), 868–873 (1976)

    Article  MathSciNet  Google Scholar 

  16. Ben-Tal, A., den Hertog, D., Vial, J.-Ph.: Deriving robust counterparts of nonlinear uncertain inequalities. Math. Program., Ser. A (2014). doi:10.1007/s10107-014-0750-8

  17. Gorissen, B.L., Ben-Tal, A., Blanc, J.P.C., den Hertog, D.: Deriving robust and globalized robust solutions of uncertain linear programs with general convex uncertainty sets. Oper. Res. 62(3), 672–679 (2014)

    Article  MathSciNet  Google Scholar 

  18. Ben-Tal, A., den Hertog, D.: Hidden conic quadratic representation of some nonconvex quadratic optimization problems. Math. Programm. 143(1–2), 1–29 (2014)

  19. Bertsimas, D., Iancu, D.A., Parrilo, P.A.: A hierarchy of near-optimal policies for multi-stage adaptive optimization. IEEE Trans. Autom. Control 56(12), 2809–2824 (2011)

    Article  MathSciNet  Google Scholar 

  20. Kaul, R.N., Kaur, S., Lyall, V.: Duality in inexact fractional programming with set-inclusive constraints. J. Optim. Theory Appl. 50(2), 279–288 (1986)

    Article  MathSciNet  Google Scholar 

  21. Crouzeix, J.P., Ferland, J.A., Schaible, S.: An algorithm for generalized fractional programs. J. Optim. Theory Appl. 47(1), 35–49 (1985)

    Article  MathSciNet  Google Scholar 

  22. Crouzeix, J.P., Ferland, J.A., Schaible, S.: A note on an algorithm for generalized fractional programs. J. Optim. Theory Appl. 50(1), 183–187 (1986)

    Article  MathSciNet  Google Scholar 

  23. Ben-Tal, A., den Hertog, D., de Waegenaere, A.M.B., Melenberg, B., Rennen, G.: Robust solutions of optimization problems affected by uncertain probabilities. Manag. Sci. 59(2), 341–357 (2013)

    Article  Google Scholar 

  24. Markowitz, H.M.: Portfolio selection. J. Finance 7(1), 77–91 (1952)

    Google Scholar 

  25. Yanıkoğlu, İ., den Hertog, D., Kleijnen, J. P. C.: Adjustable robust parameter design with unknown distributions. CentER Discussion Paper 2013(022) (2013)

  26. Löfberg, J.: Automatic robust convex programming. Optim. Methods Softw. 27(1), 115–129 (2012)

    Article  MathSciNet  Google Scholar 

  27. Charnes, A., Cooper, W.W., Rhodes, E.: Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2(6), 429–444 (1978)

    Article  MathSciNet  Google Scholar 

  28. Emrouznejad, A., Parker, B.R., Tavares, G.: Evaluation of research in efficiency and productivity: a survey and analysis of the first 30 years of scholarly literature in DEA. Socio-Econ. Plan. Sci. 42(3), 151–157 (2008)

    Article  Google Scholar 

  29. Shokouhi, A.H., Shahriari, H., Agrell, P., Hatami-Marbini, A.: Consistent and robust ranking in imprecise data envelopment analysis under perturbations of random subsets of data. OR Spectr. 36(1), 133–160 (2014)

    Article  MathSciNet  Google Scholar 

  30. Sadjadi, S.J., Omrani, H.: Data envelopment analysis with uncertain data: an application for Iranian electricity distribution companies. Energy Policy 36(11), 4247–4254 (2008)

    Article  Google Scholar 

  31. Shokouhi, A.H., Hatami-Marbini, A., Tavana, M., Saati, S.: A robust optimization approach for imprecise data envelopment analysis. Comput. & Ind. Eng. 59(3), 387–397 (2010)

    Article  Google Scholar 

  32. Wang, K., Wei, F.: Robust data envelopment analysis based MCDM with the consideration of uncertain data. J. Syst. Eng. Electr. 21(6), 981–989 (2010)

    Article  Google Scholar 

  33. Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52(1), 35–53 (2004)

    Article  MathSciNet  Google Scholar 

  34. Sion, M.: On general minimax theorems. Pac. J. Math. 8(1), 171–176 (1958)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank D. den Hertog (Tilburg University) for many useful ideas and comments, D. Iancu (Stanford University) for showing the formulation (RP-FP) used in Theorem 2.1, and the referee and editor for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bram L. Gorissen.

Additional information

Communicated by Vaithilingam Jeyakumar.

Appendices

Appendix 1: The Importance of Convexity Conditions

We provide a short example to stress the importance of the convexity/concavity conditions on \(f\) and \(g\). The second numerical example in [8] is:

$$\begin{aligned} \min _{\mathbf {x} \in \mathbb {R}^n} \max _{a \in [0,1]} \quad \frac{ a^2 x_1 x_2 + x_1^{2a} + a x_3^3 }{ 5(a-1)^2 x_1^4 + 2x_2^2 + 4ax_3} \quad \text {s.t.} \quad 0.5 \le x_i \le 5, \quad i=1,2,3. \end{aligned}$$

This problem does not satisfy the convexity/concavity conditions from Sect. 4. Lin and Sheu claim that \(\mathbf {x} = (0.5 \quad 1.5 \quad 0.5)\) and \(a=0\) is optimal with a value of 0.21 (reported as \(-0.21\)), but \(\mathbf {x} = (0.5 \quad 5 \quad 0.5)\) and \(a=1\) is a better solution (maybe still not optimal) since the corresponding value is 0.06.

Appendix 2: On the Result by Kaul et al. [20]

This appendix shows a mistake in the paper by Kaul et al. [20]. Essentially, they formulate the dual of:

$$\begin{aligned} \min _{\alpha \in \mathbb {R}_+,\mathbf {x} \in \mathbb {R}^n_+} \; \alpha \quad \text {s.t.} \quad \frac{b_0 + \mathbf {b} ^{^{\top }}\mathbf {x}}{c_0 + \mathbf {c} ^{^{\top }}\mathbf {x}} \le \alpha , \; \forall (b_0,\mathbf {b}) \in \mathcal {U}_{1} \times \mathcal {U}_{2}, \; \forall (c_0,\mathbf {c}) \in \mathcal {U}_{3} \times \mathcal {U}_{4}, \\ \quad \mathbf {A} \mathbf {x} \le \mathbf {d}. \end{aligned}$$

Note that \(\mathbf {x}\) is non-negative. In their Lemma 2.1, they claim that the worst case \((c_0,\mathbf {c})\) does not depend on \(\mathbf {x}\), and is given by \(c_0^* = \min _{c_0 \in \mathcal {U}_{3}} \{ c_0 \}\) and \(\mathbf {c^*}\), with components \(c_i^* = \min _{\mathbf {c} \in \mathcal {U}_{4}} \{ c_i \}\). This implicitly assumes that \(\mathbf {c^*}\) is a member of \(\mathcal {U}_{4}\), which is not always true. The mistake becomes clear in their numerical example, where they use \(\mathbf {c^*} = [4; 2]\), which is not in the uncertainty set. Consequently, the proposed approach gives the wrong dual problem and a suboptimal solution. Our results in Sect. 4.2 can provide the correct dual problem under milder conditions on the uncertainty sets.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorissen, B.L. Robust Fractional Programming. J Optim Theory Appl 166, 508–528 (2015). https://doi.org/10.1007/s10957-014-0633-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-014-0633-4

Keywords

Mathematical Subject Classification

Navigation