Skip to main content
Log in

Mean Field Limit of Interacting Filaments and Vector Valued Non-linear PDEs

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Families of N interacting curves are considered, with long range, mean field type, interaction. They generalize models based on classical interacting point particles to models based on curves. In this new set-up, a mean field result is proven, as \(N\rightarrow \infty \). The limit PDE is vector valued and, in the limit, each curve interacts with a mean field solution of the PDE. This target is reached by a careful formulation of curves and weak solutions of the PDE which makes use of 1-currents and their topologies. The main results are based on the analysis of a nonlinear Lagrangian-type flow equation. Most of the results are deterministic; as a by-product, when the initial conditions are given by families of independent random curves, we prove a propagation of chaos result. The results are local in time for general interaction kernel, global in time under some additional restriction. Our main motivation is the approximation of 3D-inviscid flow dynamics by the interacting dynamics of a large number of vortex filaments, as observed in certain turbulent fluids; in this respect, the present paper is restricted to smoothed interaction kernels, instead of the true Biot–Savart kernel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beale, J., Majda, A.: Vortex methods. I. Convergence in three dimensions. Math. Comput. 39(159), 1–27 (1982)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Berselli, L.C., Bessaih, H.: Some results for the line vortex equation. Nonlinearity 15(6), 1729–1746 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Berselli, L.C., Gubinelli, G.: On the global evolution of vortex filaments, blobs, and small loops in 3D ideal flows. Commun. Math. Phys. 269(3), 693–713 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bessaih, H., Gubinelli, M., Russo, F.: The evolution of a random vortex filament. Ann. Probab. 33(5), 1825–1855 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bessaih, H., Flandoli, F.: A Mean Field Result for 3D Vortex Filaments, Probabilistic Methods In Fluids, pp. 22–34. World Sci. Publ, River Edge (2003)

    MATH  Google Scholar 

  6. Bessaih, H., Flandoli, F.: Limit behaviour of a dense collection of vortex filaments. Math. Models Methods Appl. Sci. 14(2), 189–215 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bessaih, H., Wijeratne, C.: Fractional Brownian Motion and an Application to Fluids, Stochastic Equations for Complex Systems: Theoretical and Computational Topics, pp. 37–52. Springer, New York (2015)

    MATH  Google Scholar 

  8. Brzezniak, Z., Gubinelli, M., Neklyudov, M.: Global solutions of the random vortex filament equation. Nonlinearity 26(9), 2499–2514 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. V. Capasso, F. Flandoli, On stochastic distributions and currents, to appear on Mathematics and Mechanics of Complex Systems, Mathematical Sciences Publisher

  10. Chorin, A.J.: The evolution of a turbulent vortex. Commun. Math. Phys. 83(4), 517–535 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Dobrushin, R.L.: Vlasov equation. Funct. Anal. Appl. 13, 115–123 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Flandoli, F.: A probabilistic description of small scale structures in 3D fluids. Annales Inst. Henri Poincaré, Probab. Stat. 38(2), 207–228 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Flandoli, F., Gubinelli, M.: The Gibbs ensembles of vortex filaments. Probas. Theory Relat. Fields 122(3), 317–340 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Flandoli, F., Gubinelli, M.: Random currents and probabilistic models of vortex filaments. In: Seminar on Stochastic Analysis, Random Fields and Applications IV, pp. 129–139, Progr. Probab., 58, BirkhŠuser, Basel (2004)

  15. Flandoli, F., Gubinelli, M.: Statistics of a vortex filament model. Electron. J. Probab. 10(25), 865–900 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Flandoli, F., Gubinelli, M., Giaquinta, M., Tortorelli, V.M.: Stochastic currents. Stoch. Process. Appl. 115(9), 1583–1601 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Flandoli, F., Gubinelli, M., Russo, F.: On the regularity of stochastic currents, fractional Brownian motion and applications to a turbulence model. Annales Inst. Henri Poincaré, Probab. Stat. 45(2), 545–576 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Flandoli, F., Minelli, I.: Probabilistic models of vortex filaments. Czech. Math. J. 126(4), 713–731 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gallavotti, G.: Foundations of Fluid Dynamics. Translated from the Italian. Texts and Monographs in Physics. Springer-Verlag, Berlin (2002)

  20. Giaquinta, M., Modica, G., Soucek, J.: Cartesian Currents in the Calculus of Variations I: Cartesian Currents. Springer-Verlag, Berlin (1998)

    Book  MATH  Google Scholar 

  21. Krantz, S.G., Parks, H.R.: Geometric Integration Theory. Springer-Verlag, Berlin (2008)

    Book  MATH  Google Scholar 

  22. Leonard, A.: Computing three-dimensional incompressible flows with vortex elements. Ann. Rev. Fluid Mech. 17, 523–559 (1985)

    Article  ADS  Google Scholar 

  23. Lions, P.L.: On Euler equations and statistical physics, Cattedra Galileiana [Galileo Chair]. Scuola Normale Superiore, Classe di Scienze, Pisa (1998)

  24. Lions, P.L., Majda, A.: Equilibrium statistical theory for nearly parallel vortex filaments. Commun. Pure Appl. Math. 53, 76–142 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Majda, A.J., Bertozzi, A.: Vorticity and Incompressible Flow. Cambridge Texts in Applied Mathematics, vol. 27. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  26. Nualart, D., Rovira, C., Tindel, S.: Probabilstic models for vortex filaments based on fractional Brownian motion. Ann. Probab. 31(4), 1862–1899 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Vincent, A., Meneguzzi, M.: The dynamics of vorticity tubes in homogeneous turbulence. J. Fluid Mech. 258, 245–254 (1994)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to Vincenzo Capasso and Massimiliano Gubinelli. Some of their criticisms and remarks helped improve the content of the final draft of the paper. Hakima Bessaih’s research is partially supported by NSF Grant DMS-1418838.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakima Bessaih.

Appendix

Appendix

In this section, we give some properties of 1-currents that have been defined at the beginning of the paper.

1.1 Completeness of Strong Balls with Respect to the Weak Norm

Lemma 27

If B is a closed ball in \(\left( \mathcal {M},\left| \cdot \right| _{\mathcal {M} }\right) \), then \(\left( B,d\right) \) is a complete metric space.

Proof

Let \(\{\xi _{n}\}_{n\ge 0}\) be a Cauchy sequence in (Bd). This is also a Cauchy sequence in the dual space Lip\(_{b}(\mathbb {R}^{d},\mathbb {R} ^{d})^{\prime }\) with the dual operator norm. Hence it converges to some \(\xi \in \)Lip\(_{b}(\mathbb {R}^{d},\mathbb {R}^{d})^{\prime }\). Indeed Lip\(_{b}(\mathbb {R}^{d},\mathbb {R}^{d})\) is a Banach space and \(\Vert \cdot \Vert \) is the operator norm on his dual, which is complete.

Now we have an operator \(\xi \) defined on Lip\(_{b}(\mathbb {R}^{d} ,\mathbb {R}^{d})\), we want to extend it to the bigger space \(C_{b}\left( \mathbb {R}^{d};\mathbb {R}^{d}\right) \) and to show that this extension is a limit to the sequence \(\xi _{n}\) in the norm \(\Vert \cdot \Vert \).

Given \(\theta \in \)Lip\(_{b}(\mathbb {R}^{d},\mathbb {R}^{d})\), it holds, for every \(n\in \mathbb {N}\),

$$\begin{aligned} |\xi (\theta )|\le |(\xi -\xi _{n})(\theta )|+|\xi _{n}(\theta )|\le \Vert \xi -\xi _{n}\Vert (\Vert \theta \Vert _{\infty }+\text {Lip}(\theta ))+R\Vert \theta \Vert _{\infty } \end{aligned}$$

where R denotes the radius of B. Hence, as \(n\rightarrow \infty \), it holds \(|\xi (\theta )|\le R\Vert \theta \Vert _{\infty }\). We can thus apply Hahn-Banach theorem to obtain a linear functional \(\bar{\xi }\) defined on \(C_{b}\left( \mathbb {R}^{d};\mathbb {R}^{d}\right) \) such that \(\Vert \bar{\xi }\Vert \le R\) and \(\bar{\xi }\equiv \xi \) on Lip\(_{b}(\mathbb {R}^{d},\mathbb {R}^{d})^{\prime }\).

It only remains to prove that \(\xi _{n}\) converges to \(\bar{\xi }\),

$$\begin{aligned}&\Vert \bar{\xi }-\xi _{n}\Vert =\sup \{\bar{\xi }(\theta ) - \xi _{n}(\theta )\;|\;\Vert \theta \Vert _{\infty }+\text {Lip}(\theta )\le 1\}\\&\quad =\sup \{\xi (\theta ) - \xi _{n}(\theta )\;|\;\Vert \theta \Vert _{\infty } +\text {Lip}(\theta )\le 1\}=\Vert \xi -\xi _{n}\Vert \rightarrow 0,\quad \text {as}\;n\rightarrow \infty . \end{aligned}$$

\(\square \)

1.2 Convolution of 1-Currents and Matrix Valued Operators

If \(\xi \in \mathcal {M}\) and \(K:\mathbb {R}^{d}\rightarrow \mathbb {R}^{d\times d}\) is a continuous bounded matrix-valued function, then \(K*\xi \) is the vector field in \(\mathbb {R}^{d}\) with i-component given by

$$\begin{aligned} \left( K*\xi \right) _{i}\left( x\right) =\left( K_{i\cdot }*\xi \right) \left( x\right) :=\xi \left( K_{i\cdot }\left( x-\cdot \right) \right) \end{aligned}$$
(45)

where \(K_{i\cdot }\left( z\right) \) is the vector \(\left( K_{ij}\left( z\right) \right) _{j=1,...,d}\). We have

$$\begin{aligned} \left| \left( K*\xi \right) \left( x\right) \right| \le \left| \xi \right| _{\mathcal {M}}\Vert K\Vert _{\infty }. \end{aligned}$$

If K, in addition, is also of class \(C_{b}^{1}(\mathbb {R}^{d},\mathbb {R} ^{m})\), then

$$\begin{aligned} \left| \left( K*\xi \right) \left( x\right) \right| \le \left\| \xi \right\| \left( \Vert K\Vert _{\infty }+\Vert DK\Vert _{\infty }\right) . \end{aligned}$$

1.3 1-Currents Associated with Curves

One can define the current associated to a curve in the following way. Given a curve \(\gamma :\left[ 0,1\right] \rightarrow \mathbb {R}^{d}\) of class \(C^{1}\) (\(W^{1,1}\) is sufficient), consider the current

$$\begin{aligned} \xi =\int _{0}^{1}\delta \left( \cdot -\gamma \left( \sigma \right) \right) \frac{d\gamma }{d\sigma }\left( \sigma \right) d\sigma \end{aligned}$$

namely the linear functional \(\xi :C_{b}\left( \mathbb {R}^{d},\mathbb {R} ^{d}\right) \rightarrow \mathbb {R}\) defined as

$$\begin{aligned} \xi \left( \theta \right) =\int _{0}^{1}\theta \left( \gamma \left( \sigma \right) \right) \cdot \frac{d\gamma }{d\sigma }\left( \sigma \right) d\sigma . \end{aligned}$$

Notice that this is exactly how we defined the empirical measure, which is nothing but the current centered on a family of curves. In this case the push forward can be reformulated in a very specific form. For every \(\varphi \in C^{1}\left( \mathbb {R}^{d},\mathbb {R}^{d}\right) \), it is

$$\begin{aligned} \varphi _{\sharp }\xi =\int _{0}^{1}\delta \left( \cdot -\varphi \left( \gamma \left( \sigma \right) \right) \right) D\varphi \left( \gamma \left( \sigma \right) \right) \frac{d\gamma }{d\sigma }\left( \sigma \right) d\sigma . \end{aligned}$$

Remark 28

It is easy to see that the push-forward of \(\gamma \) with respect to \(\varphi \) is the push-forward of \(\varphi \circ \gamma \). This follows from the previous formula and the chain rule, \(\frac{d\eta }{d\sigma }\left( \sigma \right) =D\varphi \left( \gamma \left( \sigma \right) \right) \frac{d\gamma }{d\sigma }\left( \sigma \right) \).

1.4 1-Currents Associated with Vector Fields

We have seen that \(\varphi _{\sharp }\xi \) has a nice reformulation when \(\xi \) is associated to a smooth curve. In Sect. 4 we consider special currents, which are induced by vector fields: we restrict to these particular currents as an intermediate step to prove Lemma .

We briefly describe here how to give a reformulation of \(\xi \) and its push-forward when the current is associated to a vector field. Thus, with little abuse of notations, let \(\xi : \mathbb {R}^{d}\rightarrow \mathbb {R}^{d}\) be an integrable vector field and denote by \(\xi \) the associated current defined as

$$\begin{aligned} \xi \left( \theta \right) =\int _{\mathbb {R}^{d}} \theta \left( x\right) \cdot \xi \left( x\right) dx. \end{aligned}$$

Proposition 29

Assume that \(\varphi \) is a diffeomorphism of \(\mathbb {R}^{d}\) and \(\xi \) is a vector field on \(\mathbb {R}^{d}\) in \(\mathbb {R}^{d}\) of class \(L^{1}\). Then \(\varphi _{\sharp }\xi \) is the following vector field in \(\mathbb {R}^{d}\), of class \(L^{1}\):

$$\begin{aligned} \left( \varphi _{\sharp }\xi \right) \left( x\right) =D\varphi \left( \varphi ^{-1}\left( x\right) \right) \xi \left( \varphi ^{-1}\left( x\right) \right) \left| \det D\varphi ^{-1}\left( x\right) \right| . \end{aligned}$$

Proof

By definition we have

$$\begin{aligned} \left( \varphi _{\sharp }\xi \right) \left( \theta \right)&=\xi \left( \varphi _{\sharp }\theta \right) =\int _{\mathbb {R}^{d}} D\varphi \left( x\right) ^{T}\theta \left( \varphi \left( x\right) \right) \cdot \xi \left( x\right) dx\\&=\int _{\mathbb {R}^{d}} \theta \left( \varphi \left( x\right) \right) \cdot D\varphi \left( x\right) \xi \left( x\right) dx\\&= \int _{\mathbb {R}^{d}} \theta \left( y\right) \cdot D\varphi \left( \varphi ^{-1}\left( y\right) \right) \xi \left( \varphi ^{-1}\left( y\right) \right) \left| \det D\varphi ^{-1}\left( y\right) \right| dy. \end{aligned}$$

In the last inequality we used the change of variable \(y = \varphi (x)\). \(\square \)

Remark 30

In the case when \(\varphi \) is a diffeomorphismus, if \(\xi \) has compact support, then the pursh-forward \(\varphi _{\sharp }\xi \) has compact support.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bessaih, H., Coghi, M. & Flandoli, F. Mean Field Limit of Interacting Filaments and Vector Valued Non-linear PDEs. J Stat Phys 166, 1276–1309 (2017). https://doi.org/10.1007/s10955-016-1706-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1706-6

Keywords

Mathematics Subject Classification

Navigation